首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have envisaged the hydrogen evolution and oxygen evolution reactions (HER and OER) on a two-dimensional (2D) noble-metal-free titanium disulfide (TiS2) monolayer, which belongs to the exciting family of transition metal dichalcogenides (TMDCs). Our theoretical investigation to probe the HER and OER on both the H and T phases of 2D TiS2 is based on electronic-structure calculations witihin the framework of density functional theory (DFT). Since TiS2 is the lightest compound among the group-IV TMDCs, it is worth exploring the catalytic activity of a TiS2 monolayer through the functionalization at the anion (S) site, substituting with P, N, and C dopants as well as by incorporating single sulfur vacancy defects. We have investigated the effect of functionalization and vacancy defects on the structural, electronic, and optical response of a TiS2 monolayer by determining the density of states, work-function, and optical absorption spectra. We have determined the HER and OER activities for the functionalized and defective TiS2 monolayers based on the reaction coordinate, which can be constructed from the adsorption free energies of the intermediates (H*, O*, OH* and OOH*, where * denotes the adosrbed state) in the HER and OER mechanisms. Finally, we have shown that TiS2 monolayers are emerging as a promising material for the HER and OER mechanisms under the influence of functionalization and defects.  相似文献   

2.
《中国化学快报》2020,31(9):2442-2446
Nanobubble is a rising research field, which attracts more and more attentions due to its potential applications in medical science, catalysis, electrochemistry and etc. To better implement these applications, it is urgent to understand one of the most important mechanisms of nanobubbles, the evolution. However, few attentions have been paid in this aspect because of the methodology difficulties. Here we successfully used dark-field microscopy to study the evolution process of single nanobubbles generated from formic acid dehydrogenation on single Pd-Ag nanoplates. We found some of the nanobubbles in this system can exhibit three distinct states representing different sizes, which can transform among each other. These transitions are not direct but through some intermediate states. Further kinetic analysis reveals complicated mechanisms behind the evolution of single nanobubbles. The results acquired from this study can be applicable to nanobubble systems in general and provide insights into the understanding of mechanisms affecting the stability of nanobubbles and their applications.  相似文献   

3.
《中国化学快报》2023,34(1):107248
Transition metal hydroxides/oxyhydroxides have recently emerged as highly active electrocatalysts for oxygen evolution reaction in alkaline water electrolysis, while have not yet been widely investigated for hydrogen evolution electrocatalysts owing to their unfavorable H*-adsorption, making it difficult to construct an overall-water-splitting cell for hydrogen production. In this work, we proposed a straightforward and effective approach to develop an efficient in-plane heterostructured CoOOH/Co(OH)2 catalyst via in-situ electrochemical dehydrogenation method, in which the dehydrogenated –CoOOH and Co(OH)2 at the surface synergistically boost the hydrogen evolution reaction (HER) kinetics in base as confirmed by high-resolution transmission electron microscope, synchrotron X-ray absorption spectroscopy, and electron energy loss spectroscopy. Due to the in-situ dehydrogenation of ultrathin Co(OH)2 nanosheets, the catalytic activity of the CoOOH/Co(OH)2 heterostructures is progressively improved, which exhibit outstanding hydrogen-evolving activity in base requiring a low overpotential of 132 mV to afford 10 mA/cm2 with very fast reaction kinetics after 60 h dehydrogenation. The gradually improved catalytic performance for the CoOOH/Co(OH)2 is probably due to the enhanced H*-adsorption induced by the synergistic effect of heterostructures and better conductivity of CoOOH relative to electrically insulating Co(OH)2. This work will open the opportunity for a new family of transition metal hydroxides/oxyhydroxides as active HER catalysts, and also highlight the importance of using in situ techniques to construct precious metal-free efficient catalysts for alkaline hydrogen evolution.  相似文献   

4.
《中国化学快报》2023,34(6):107643
Two-dimensional electride Ca2N has strong electron transfer ability and low work function, which is a potential candidate for hydrogen evolution reaction (HER) catalyst. In this work, based on density functional theory calculations, we adopt two strategies to improve the HER catalytic activity of Ca2N monolayer: introducing Ca or N vacancy and doping transition metal atoms (TM, refers to Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ru, Hf, Ta and W). Interestingly, the Gibbs free energy ΔGH1 of Ca2N monolayer after introducing N vacancy is reduced to -0.146 eV, showing good HER catalytic activity. It is highlighted that, the HER catalytic activity of Ca2N monolayer can be further enhanced with TM doping, the Gibbs free energy ΔGH1 of single Mo and double Mn doped Ca2N are predicted to be 0.119 and 0.139 eV, respectively. The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca2N monolayer.  相似文献   

5.
High‐resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H‐MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

6.
High-resolution scanning electrochemical cell microscopy (SECCM) is used to image and quantitatively analyze the hydrogen evolution reaction (HER) catalytically active sites of 1H-MoS2 nanosheets, MoS2, and WS2 heteronanosheets. Using a 20 nm radius nanopipette and hopping mode scanning, the resolution of SECCM was beyond the optical microscopy limit and visualized a small triangular MoS2 nanosheet with a side length of ca. 130 nm. The electrochemical cell provides local cyclic voltammograms with a nanoscale spatial resolution for visualizing HER active sites as electrochemical images. The HER activity difference of edge, terrace, and heterojunction of MoS2 and WS2 were revealed. The SECCM imaging directly visualized the relationship of HER activity and number of MoS2 nanosheet layers and unveiled the heterogeneous aging state of MoS2 nanosheets. SECCM can be used for improving local HER activities by producing sulfur vacancies using electrochemical reaction at the selected region.  相似文献   

7.
Nano and single-atom catalysis open new possibilities of producing green hydrogen (H2) by water electrolysis. However, for the hydrogen evolution reaction (HER) which occurs at a characteristic reaction rate proportional to the potential, the fast generation of H2 nanobubbles at atomic-scale interfaces often leads to the blockage of active sites. Herein, a nanoscale grade-separation strategy is proposed to tackle mass-transport problem by utilizing ordered three-dimensional (3d) interconnected sub-5 nm pores. The results reveal that 3d criss-crossing mesopores with grade separation allow efficient diffusion of H2 bubbles along the interconnected channels. After the support of ultrafine ruthenium (Ru), the 3d mesopores are on a superior level to two-dimensional system at maximizing the catalyst performance and the obtained Ru catalyst outperforms most of the other HER catalysts. This work provides a potential route to fine-tuning few-nanometer mass transport during water electrolysis.  相似文献   

8.
This work proposes a novel method for measuring the intrinsic activity of single metal-based nanoparticles towards water reduction in neutral media at industrially relevant current densities. Instead of using gas nanobubbles as proxy, the method uses optical microscopy to track the local footprint of the reaction through the precipitation of metal hydroxide, which is associated to the local pH increase during electrocatalysis. The results show the electrocatalytic activities of different types of metal nanoparticles and bifunctionnal core-shell nanostructures made of Ni and Pt, and demonstrate the importance of metal hydroxide nano-shells in enhancing electrocatalysis. This method should be generalizable to any electrocatalytic reaction involving pH changes such as nitrate or CO2 reduction.  相似文献   

9.
Electrochemically controlled formation and growth of hydrogen nanobubbles   总被引:2,自引:0,他引:2  
Electrogenerated microscale bubbles that are confined at the electrode surface have already been extensively studied because of their significant influence on electrochemistry. In contrast, as far as we know, whether nanoscale bubbles exist on the electrode surface has not been experimentally confirmed yet. Here, we report the observation of electrochemically controlled formation and growth of hydrogen nanobubbles on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ tapping mode atomic force microscopy (TMAFM). By using TMAFM imaging, we observed that electrochemically generated hydrogen gas led to the formation of nanobubbles at the HOPG surface. We then employed a combination of techniques, including phase imaging, ex-situ degassing, and tip perturbation, to confirm the gas origin of such observed nanobubbles. We further demonstrated that the formation and growth of nanobubbles could be well controlled by tuning either the applied voltage or the reaction time. Remarkably, we could also monitor the evolution process of nanobubbles, that is, formation, growth, coalescence, as well as the eventual release of merged microbubbles from the HOPG surface.  相似文献   

10.
Stable silver nanoparticles were synthesized with the aid of a novel, non-toxic, eco-friendly biological material namely, green pepper extract. The aqueous pepper extract was used for reducing silver nitrate. The synthesized silver nanoparticles were analyzed with transmission electron microscopy (TEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). TEM image shows the formation of silver nanoparticles with average particle size of 20 nm which agrees well with the XRD data. The main advantage of using pepper extract as a stabilizing agent is that it provides long-term stability for nanoparticles by preventing particles agglomeration. To investigate the electrocatalytic efficiency of silver nanoparticles, silver nanoparticles modified carbon-paste electrode (AgNPs–CPE) displayed excellent electrochemical catalytic activities towards hydrogen peroxide (H2O2) and hydrogen evolution reaction (HER). The reduction overpotential of H2O2 was decreased significantly compared with those obtained at the bare CPE. An abrupt increase of the cathodic current for HER was observed at modified electrode. Also, the antibacterial activity of silver nanoparticle was performed using Escherichia coli and Salmonellae. The approach of plant-mediated synthesis appears to be cost efficient, eco-friendly and easy methods.  相似文献   

11.
Molybdenum disulfide (MoS2) has been regarded as a favorable photocatalytic co‐catalyst and efficient hydrogen evolution reaction (HER) electrocatalyst alternative to expensive noble‐metals catalysts, owing to earth‐abundance, proper band gap, high surface area, and fast electron transfer ability. In order to achieve a higher catalytic efficiency, defects strategies such as phase engineering and vacancy introduction are considered as promising methods for natural 2H‐MoS2 to increase its active sites and promote electron transfer rate. In this study, we report a new two‐step defect engineering process to generate vacancies‐rich hybrid‐phase MoS2 and to introduce Ru particles at the same time, which includes hydrothermal reaction and a subsequent hydrogen reduction. Compositional and structural properties of the synthesized defects‐rich MoS2 are investigated by XRD, XPS, XAFS and Raman measurements, and the electrochemical hydrogen evolution reaction performance, as well as photocatalytic hydrogen evolution performance in the ammonia borane dehydrogenation are evaluated. Both catalytic activities are boosted with the increase of defects concentrations in MoS2, which ascertains that the defects engineering is a promising route to promote catalytic performance of MoS2.  相似文献   

12.
Proton reduction is one of the most fundamental and important reactions in nature. MoS2 edges have been identified as the active sites for hydrogen evolution reaction (HER) electrocatalysis. Designing molecular mimics of MoS2 edge sites is an attractive strategy to understand the underlying catalytic mechanism of different edge sites and improve their activities. Herein we report a dimeric molecular analogue [Mo2S12]2?, as the smallest unit possessing both the terminal and bridging disulfide ligands. Our electrochemical tests show that [Mo2S12]2? is a superior heterogeneous HER catalyst under acidic conditions. Computations suggest that the bridging disulfide ligand of [Mo2S12]2? exhibits a hydrogen adsorption free energy near zero (?0.05 eV). This work helps shed light on the rational design of HER catalysts and biomimetics of hydrogen‐evolving enzymes.  相似文献   

13.
MoS2 nanosheets of one to few layer thickness present novel electronic and enhanced catalytic properties with respect to the bulk material. Here we show that a simple and highly scalable ball-milling procedure can lead to significant improvements of the electrochemical and catalytic properties of the bulk natural MoS2. We characterized the material before and after the milling process by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy in order to evaluate morphological and chemical features. We investigated the electrochemical properties by means of voltammetry techniques to monitor the electron transfer with [Fe(CN)6]4 −/3  redox probe and the catalytic properties by monitoring the electrochemical hydrogen evolution reaction (HER). A significant overpotential lowering of about 210 mV is obtained for the HER by the ball-milled material when compared to bulk materials. This has a huge potential for the lowering of the energy consumption during hydrogen evolution. Ball-milling offers highly scalable dry method for large scale production of electrocatalyst with enhanced properties.  相似文献   

14.
TiO2 has gained tremendous attention as a cutting-edge material for application in photocatalysis. The performance of TiO2 as a photocatalyst depends on various parameters including morphology, surface area, and crystallinity. Although TiO2 has shown good catalytic activity in various catalysis systems, the performance of TiO2 as a photocatalyst is generally limited due to its low conductivity and a wide optical bandgap. Numerous different studies have been devoted to overcome these problems, showing significant improvement in photocatalytic performance. In this study, we summarize the recent progress in the utilization of TiO2 for the photocatalytic hydrogen evolution reaction (HER). Strategies for modulating the properties toward the high photocatalytic activity of TiO2 for HER including structural engineering, compositional engineering, and doping are highlighted and discussed. The advantages and limitations of each modification approach are reviewed. Finally, the remaining obstacles and perspective for the development of TiO2 as photocatalysts toward high efficient HER in the near future are also provided.  相似文献   

15.
Two‐dimensional (2D) PtSe2 shows the most prominent layer‐dependent electrical properties among various 2D materials and high catalytic activity for hydrogen evolution reaction (HER), and therefore, it is an ideal material for exploring the structure–activity correlations in 2D systems. Here, starting with the synthesis of single‐crystalline 2D PtSe2 with a controlled number of layers and probing the HER catalytic activity of individual flakes in micro electrochemical cells, we investigated the layer‐dependent HER catalytic activity of 2D PtSe2 from both theoretical and experimental perspectives. We clearly demonstrated how the number of layers affects the number of active sites, the electronic structures, and electrical properties of 2D PtSe2 flakes and thus alters their catalytic performance for HER. Our results also highlight the importance of efficient electron transfer in achieving optimum activity for ultrathin electrocatalysts. Our studies greatly enrich our understanding of the structure–activity correlations for 2D catalysts and provide new insight for the design and synthesis of ultrathin catalysts with high activity.  相似文献   

16.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

17.
Exploring highly efficient electrocatalysts and understanding the reaction mechanisms for hydrogen electrocatalysis,including hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in alkaline media are conducive to the conversion of hydrogen energy.Herein,we reported a new strategy to boost the HER/HOR performances of ruthenium (Ru) nanoparticles through nitrogen (N) modification.The obtained N-Ru/C exhibit remarkable catalytic performance,with normalized HOR exchange current d...  相似文献   

18.
《中国化学快报》2023,34(4):107622
Controlling the particle size of catalyst to understand the active sites is the key to design efficient electrocatalysts toward hydrogen electrode reactions including hydrogen oxidation and evolution (HOR/HER). Herein, the hydrogen and hydroxyl adsorption on Ru/C could be effectively tuned for HOR/HER by simple controlling the particle sizes. It is found that the metallic Ru (Ru0) is the active site for HOR/HER, while oxidized Ru (Rux+) will hinder the adsorption and desorption of hydrogen on the catalyst. For the HOR, catalyst with small particles is more efficient, due to it is a three-phase interface reaction of gas on the surface of the catalyst. For the HER, the metallic state of Ru is crucial. The deconvolution of hydrogen peaks indicates that the catalytic sites with low hydrogen binding energy (HBE) shoulder the majority of the HOR activity. CO stripping curve further demonstrates that the stronger hydroxyl species (OHad) affinity is beneficial to promote the HOR performance. The results indicate that the design of efficient HOR/HER catalyst should focus on the balance between particle size and metallic states.  相似文献   

19.
Conductivity, carrier mobility, and a suitable Gibbs free energy are important criteria that determine the performance of catalysts for a hydrogen evolution reaction (HER). However, it is a challenge to combine these factors into a single compound. Herein, we discover a superior electrocatalyst for a HER in the recently identified Dirac nodal arc semimetal PtSn4. The determined turnover frequency (TOF) for each active site of PtSn4 is 1.54 H2 s?1 at 100 mV. This sets a benchmark for HER catalysis on Pt‐based noble metals and earth‐abundant metal catalysts. We make use of the robust surface states of PtSn4 as their electrons can be transferred to the adsorbed hydrogen atoms in the catalytic process more efficiently. In addition, PtSn4 displays excellent chemical and electrochemical stabilities after long‐term exposure in air and long‐time HER stability tests.  相似文献   

20.
The metallic 1T-MoS2 has attracted considerable attention as an effective catalyst for hydrogen evolution reactions (HERs). However, the fundamental mechanism about the catalytic activity of 1T-MoS2 and the associated phase evolution remain elusive and controversial. Herein, we prepared the most stable 1T-MoS2 by hydrothermal exfoliation of MoS2 nanosheets vertically rooted into rigid one-dimensional TiO2 nanofibers. The 1T-MoS2 can keep highly stable over one year, presenting an ideal model system for investigating the HER catalytic activities as a function of the phase evolution. Both experimental studies and theoretical calculations suggest that 1T phase can be irreversibly transformed into a more active 1T′ phase as true active sites in photocatalytic HERs, resulting in a “catalytic site self-optimization”. Hydrogen atom adsorption is the major driving force for this phase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号