首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study, the remediation performance of electrokinetic (EK) technology integrated with different surfactants for removing phenanthrene from unsaturated soils was investigated. A synthetic surfactant (Triton X-100) and a biosurfactant (rhamnolipid) were used to enhance phenanthrene solubility and removal efficiency during EK process. Results indicate that the electro-osmotic flow (EOF) rate in the rhamnolipid system is higher than that in Triton X-100. Using the EK technology for the removal of phenanthrene in the presence of rhamnolipid was more efficient than in the presence of Triton X-100. In addition to the transport mechanism of phenanthrene in EK system, the presence of rhamnolipid may promote microbial growth in the soil–water system and bring about biodegradation of phenanthrene. A diffusion–advection–sorption (DAS) model was solved by MATLAB, based on the linear sorption isotherm at the non-equilibrium condition, which is feasible to simulate the movement of phenanthrene during the EK + Triton X-100 treatment.  相似文献   

2.
Inorganic phosphate may influence the adsorption of glyphosate to soilsurface sites. It has been postulated that glyphosate sorption is dominatedby the phosphoric acid moiety, therefore, inorganic phosphate could competewith glyphosate for surface sorption sites. We examine sorption of glyphosatein low organic carbon systems where clay minerals dominate the available adsorptionsites using 32P-labeled phosphate and 14C-labeled glyphosateto track sorption. We found glyphosate sorption strongly dependent on phosphateadditions. Isotherms were generally of the L type, which is consistent witha limited number of surface sites. Most sorption on whole soils could be accountedfor by sorption observed on model clays of the same mineral type as foundin the soils.  相似文献   

3.
A sorption study of 25 volatile organic compounds (VOCs) in different agricultural soils was carried out by using headspace-gas chromatography-mass spectrometry. The extraction of the VOCs from soil samples was carried out following the EPA method with some differences such as addition of potassium chloride and different instrumental conditions which provide higher sample throughput. In addition, a complementary study on several procedures for soil fortification with VOCs was also assayed, fortification with minimal sample handling was selected in order to minimise evaporation losses of the VOCs. The effect of clay minerals (7.0-69.7%) and organic carbon (0.2-3.5%) contents on acid and alkaline (pH 5.3-8.8) soils were evaluated. Based on the results, all compounds assayed were more sorbed in alkaline soils than acid ones; chlorobenzenes interact more strongly with agricultural soils than do alkylbenzenes. The organic carbon content affects the sorption of 25 VOCs in alkaline soils (the highest sorption was found for the most organic soil), while in acid soils VOC sorption increases as the organic carbon content decreases. The clay mineral fraction plays an important role in the sorption of VOCs in acid soil owing to pi-/n-electron interactions, this effect being more marked for chlorobenzenes.  相似文献   

4.
The objective of this investigation is to evaluate the influences of natural sorbent particle size and system Ca(2+) concentration on sorption of low-polarity organic chemicals. The physicochemical properties of the different particle size soil and sediment subsamples and the surface characters of the soil and sediment samples in various CaCl(2) concentrations were determined. The sorption behavior of phenanthrene (PHN) on the subsamples of different particle size and to the samples in various CaCl(2) solutions was examined. Batch experiments demonstrate that the sorption capacities increase with decreased particle size for both soil and sediment. It is presumably due to the higher total organic carbon (TOC) content for the finer particles. But the enhancements in sorption coefficients are not met with the equal increases in TOC contents. The effect of Ca(2+) on PHN uptake is strong in short contact time but slight in long contact time. With increasing Ca(2+) concentration, the sorption capacities for Beizhai soil increase first in the low Ca(2+) concentration range, and then decline. Nevertheless, the increase of Ca(2+) concentration greatly reduces the uptake of phenanthrene on Guanting sediment over the overall measured range. The different physicochemical properties, such as dissolved organic carbon (DOC) content, mineral and element composition, and surface characters, between soil and sediment may result in this discrepancy.  相似文献   

5.
胡敏酸的结构特征及其吸附行为   总被引:5,自引:0,他引:5  
梁重山  党志  刘丛强 《分析化学》2006,34(3):288-292
使用0.5mol/L NaOH和0.1mol/L Na_4P_2O_7溶液分别从土壤中提取胡敏酸,并且对其进行了元素分析、红外光谱、固态13C核磁共振的定性、定量研究。结果表明,两种胡敏酸的性质很相似,但也存在一些微小差异,Na_4P_2O_7提取的胡敏酸比NaOH提取的具有芳香度较大、聚合度较高、极性官能团含量较多的特点。测定了菲在6个胡敏酸上的吸附等温线,Freundlich模型很好的拟合了所有吸附等温线,相关系数r均在0.992以上。有机碳分配系数K_(oc)与胡敏酸中极性碳(POC)之间存在明显的线性相关关系,并受到提取剂类型的影响。  相似文献   

6.
土壤有机质对菲的吸附-解吸平衡的影响   总被引:13,自引:0,他引:13  
以自然土壤和过氧化氢分级土壤为实验模拟样品,测定了菲在这些样品上的吸附一解吸等温线,用线性和Freundlich模型拟合了这些等温线.^13C NMR谱表明,随着土壤有机质腐殖化程度的加深,有机质将含有较多的长链烷烃化合物,含氧、氮化合物有所减少,芳香环的数量变化不大.吸附实验结果表明,土壤有机质含量与菲的吸附容量存在一定的线性相关关系.有机质腐殖质化程度较深的样品比原土壤具有更大的吸附容量,其吸附等温线表现出更为明显的非线性,而且具有更明显的解吸滞后现象.说明土壤中一些结构紧密和含极性官能团较少的有机质是引起菲的非线性吸附过程和解吸滞后现象的主要原因。  相似文献   

7.
Sorption of metal ions on oxide/hydroxide surfaces mediates the fate and transport of these ions in many natural systems. These metallic ions often exist in bulk in the aqueous phase as complexes with inorganic and organic ligands. In the present study, we investigated the sorption properties of manganese dioxide in the presence of phosphate which is thought to be one of the most important complex forming species. The surface area, point of zero charge and structural morphology of the solid manganese dioxide were determined. Cd(2+) sorption studies were carried out on manganese dioxide as a function of pH, temperature and phosphate concentration. Cd(2+) sorption increased with increasing pH, temperature and phosphate concentration. It was found that phosphate formed both outer and inner sphere complexes via metal and ligand-like adsorption. The Langmuir equation was applied to describe the data and from the constants of this equation different thermodynamic parameters such as DeltaH(0), DeltaS(0) and DeltaG(0) were evaluated.  相似文献   

8.
A rapid and sensitive technique is needed to analyze water and soils for chlorocatechols, common environmental pollutants produced from wood pulp chlorination and other processes. The soil bacteria Pseudomonas putida, harboring plasmid pSMM50R-B', selectively express beta-galactosidase in response to 3-chlorocatechol in pure water samples. The objective of the study was to determine whether background matrices in fresh water, sea water, soils, and organic solvents interfered with 3-chlorocatechol analysis by use of a bacteria-sensing system and by high-performance liquid chromatography (HPLC). Although 3-chlorocatechol detection by HPLC was not substantially affected by the background composition of aqueous or organic solvents, HPLC was ineffective in the analysis of contaminated soils due to irreversible contaminant sorption. Whereas detection by the bacteria-sensing system was reduced in the presence of aqueous and organic solvents, interferences could be reduced by sample dilution. 3-Chlorocatechol was detected when the bacteria were added directly to contaminated soils, suggesting that the organism enhanced desorption or had access to the sorbed compounds. Results indicate that the bacteria-sensing system has wide application for detection of 3-chlorocatechols in environmental samples, especially in soils where extraction and HPLC analysis are not efficient due to extensive contaminant sorption.  相似文献   

9.
Summary The behavior of cadmium labeled with 109Cd in different depth horizons of arable and forest soils were studied under static (batch) conditions in three interconnected processes, which consist of sorption, desorption and extraction. In the sorption, Cd2+ was applied in the aqueous calcium nitrate solution. Both untreated soils and peroxide treated soils were used in order to remove organic matter from some of the soil samples used in parallel. The influence of the V/m ratio on the sorption coefficients was investigated in preliminary experiments with untreated soils. Contrary to the usually short-term sorption, a long-term sorption of cadmium was investigated in untreated and treated soil horizons, which lasted more than fortnight. Kinetic studies of sorption were carried out and cadmium concentration dependence in aqueous phase of the second order kinetic constants was observed. For evaluation of sorption and desorption processes Freundlich isotherms were used. It was found that the Freundlich adsorption intensity coefficient is more time dependent than the absorption capacity coefficient, and the sorption itself consists of rapid and slow processes according to the soil constituents. Desorption and extraction processes revealed the possibility of cadmium recovery from various soil horizons. Based on the obtained results two- or three-stage theory of cadmium retention in soils was proposed. Some new insight into the role of organic matter in the sorption/desorption process of cadmium is also presented.  相似文献   

10.
The sorption and desorption of phenanthrene by three engineered nanoparticles including nanosize zerovalent iron (NZVI), copper (NZVC), and silicon dioxide (NSiO2) were investigated. The sorption of phenanthrene onto NSiO2 was linear and reversible due to the hydrophilic properties of NSiO2. In comparison, sorption of phenanthrene onto NZVI and NZVC was nonlinear and irreversible, which was potentially due to the existence of significantly heterogeneous surface energy distribution patterns detected by a standard molecular probe technique. Naphthalene exerted significant competitive sorption with phenanthrene for NZVI and NZVC, and the isotherm of phenanthrene changed from being significantly nonlinear to nearly linear when naphthalene was simultaneously absorbed. A surface adsorption mechanism was proposed to explain the observed sorption and competition of phenanthrene on both NZVI and NZVC. In contrast, no competition was observed for sorption onto NSiO2. The sorption of phenanthrene on all three nanoparticles significantly decreased with increasing pH. The sorption irreversibility of phenanthrene on NZVI and NZVC were significantly enhanced with decreasing pH. A pH-dependent hydrophobic effect and dipole interactions between the charged surface (electron acceptors) and phenanthrene with electron-rich pi systems (electron donors) were proposed to explain the observed pH-dependent sorption.  相似文献   

11.
Fluorine is a phytotoxic element that can reach the soil from various industrial activities. Fluorine sorption by soil is crucial to protect water and food chain from fluorine pollution. In Galicia (NW Spain), various activities emit fluorine into the atmosphere, mainly ceramic industries and an aluminium smelter. This study, aiming to investigate fluorine sorption by Galician soils, was conducted on natural soil horizons representative of the area. Most soils were acid and rich in organic matter and showed strong fluorine sorption. The lowest sorptions were exhibited by a near-neutral serpentinite-derived soil (1001 mg kg(-1)) and the B horizons of soils developed from quartz schist (989 mg kg(-1)), and the highest by the A horizons of amphibolite-derived soils (1783 mg kg(-1)). In soils developed from quartz schist, biotitic schist and amphibolite, A horizons sorbed more fluoride than the corresponding B horizons (average 1621 and 1324 mg kg(-1), respectively), while the opposite is true in granite-derived soils (average 1644 and 1324 mg kg(-1), respectively). In the A horizons, the F sorption significantly correlated to soil pH (r=-0.79), pH in NaF (r=0.83) and oxalate Al (r=0.81). In the B horizons, sorption correlated to soil pH (r=-0.78), oxalate Fe (r=0.71) and organic C (r=0.66). F sorption can be described by both the Langmuir and Freundlich equations. The concentration of free fluoride in the equilibrium solutions increased above pH 6.  相似文献   

12.
The sorption of manganese(II) and zinc(II) on soil samples collected from Sapporo (Japan) and Tiksi (Russia) was investigated using a radiotracer technique to elucidate the abilities of soil organic matter as a scavenger of heavy metals released to the soil environment. The sorbed amounts of both manganese and zinc metals to organic soil components were estimated to be different on different soils, depending on the pH of aqueous phase. The degree of humification of pertinent soils was suggested as a parameter which could describe the properties of the organic soil matter in complexing with heavy metals.  相似文献   

13.
The study of the transport mechanisms connected to solid-liquid interactions is fundamental in the determination of the extension of the pollution of a site and in the evaluation of the best remediation process to be applied. The sorption of hydrophobic ionizable organic contaminants from the groundwaters is supervised not only by the physico-chemical properties of soil and pollutants, but also by the groundwaters pH, which deeply influences their solubility in the aqueous media, and consequently their transport mechanisms in the aquifer. In this work an experimental study of the sorption of phenol and 2-nitrophenol on two soils, different in particle-size distribution, CEC and organic carbon content, was realized. The sorption potential of the soils was evaluated by means of a physical, mineralogical and chemical characterization. The experimental data coming from some batch tests, performed at pH values equal to 4, 7 and 10 were fitted by means of linear, Freundlich and Langmuir isotherms models. The soil-contaminants interaction mechanisms that influence the isotherms shapes were then analyzed and discussed, and a comparison between the theoretical and experimental values of the partitioning coefficient KD was performed.  相似文献   

14.
U(VI) sorption on kaolinite was studied as functions of contact time, pH, U(VI) concentration, solid-to-liquid ratio (m/V) by using a batch experimental method. The effects of sulfate and phosphate on U(VI) sorption were also investigated. It was found that the sorption kinetics of U(VI) can be described by a pseudo-second-order model. Potentiometric titrations at variable ionic strengths indicated that the titration curves of kaolinite were not sensitive to ionic strength, and that the pH of the zero net proton charge (pHPZNPC) was at 6.9. The sorption of U(VI) on kaolinite increased with pH up to 6.5 and reached a plateau at pH >6.5. The presence of phosphate strongly increased U(VI) sorption especially at pH <5.5, which may be due to formation of ternary surface complexes involving phosphate. In contrast, the presence of sulfate did not cause any apparent effect on U(VI) sorption. A double layer model was used to interpret both results of potentiometric titrations and U(VI) sorption on kaolinite.  相似文献   

15.
Phosphate rock (Pho-ore) is the starting raw material used in manufacturing of most phosphate products. This material contains phosphorous, natural uranium, thorium potassium radionuclide and other trace elements. Single super phosphate powder (SSPho-P), single super phosphate granules (SSPho-G), and triple super phosphate (TSPho) are the common phosphate products produced along with phosphogypsym (CaSO4) as a waste product. Since these materials are industrially manufactured by the reaction of the phosphate ore with phosphoric and sulphuric acids, these products and the waste product are extremely acidic. Pho-ore, SSPho-P, SSPho-G, TSPho and CaSO4 samples were used in our study. Chemical analyses showed that these phosphate samples contain phosphorous, iron, aluminum ions and traces of uranium ions. Accumulation of the fertilizers on soils usually transfers some of these ions from the fertilizer materials to the soil/water interfaces. The migration of uranium U(VI), P, Al and Fe in subsurface soils was found to be strongly influenced by the sorption/desorption reaction at the solid/water interfaces. Thus, dissolution of these ions in soil/water phases is very important. Speciation of U(VI), P, Al and Fe in soil/water phases were calculated using a geochemical code (MINTEQA2). This study was conducted to determine sorption properties and the surface electrical properties of these ions at the soil samples.  相似文献   

16.
Humic substances and other dissolved organic matter (DOM) in Lake Biwa and the surrounding rivers were investigated to elucidate their origins and behavior. An annual increase in chemical oxygen demand (COD) has been observed in the northern basin of Lake Biwa since 1985. The concentrations of dissolved organic carbon (DOC) in the northern and southern basins of Lake Biwa were 1.7-2.4 mgC/l and 1.9-2.6 mgC/l, respectively. The DOC concentrations tended to be high in summer and low in winter, and the seasonal changes in the concentrations of humic substances were small. The humic substances content of DOM was considered to be comparatively small because the ratio of the concentration of humic substances to DOC was in the range of 0.14-0.32. From the results of the fractionation of DOM in lake waters, it was estimated that hydrophobic acids, such as humic substances and hydrophilic acids, were about 25% and 45%, respectively. The main origin of hydrophobic acids in Lake Biwa may be humic substances from soils around the rivers that flow into Lake Biwa, while hydrophilic acids may be due to the inner production by phytoplankton. Therefore, the increase of COD in the northern basin of Lake Biwa may be attributed to the contributions of not only humic substances but also hydrophilic acids.  相似文献   

17.
The subsurface sorption of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) onto a synthetic aquifer material (iron-oxide-coated quartz) and two natural aquifer materials (Ringold sediment and Bemidji soils) was studied in both batch and column experiments. The hypothesis that hydrophobic effects followed by ligand exchange are the dominant mechanism contributing to the chemical sorption happening between dissolved natural organic matter (NOM) and the mineral surfaces is supported by observations of several phenomena: nonlinear isotherms, faster sorption rates versus slower desorption rates, phosphate competition, a solution pH increase during NOM sorption, and functional groups and aromaticity-related sorption. In addition, high-pressure size exclusion chromatography (HPSEC) and carboxylic acidity showed that lower molecular weight NOM components of SRHA are preferentially sorbed to iron oxide, a result in contrast to that for SRFA. Phosphate increased the desorption of sorbed NOM as well as soil organic matter. All of these trends support ligand exchange as the dominant reaction between NOM and the iron oxide surfaces; however, if the soil surface has been occupied by soil organic matter, then the sorption of NOM is more due to hydrophobic effect.  相似文献   

18.
The measurements of dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in seawater are key in global change and coastal eutrophication studies. Nowadays, the high-temperature combustion (HTC) technique is a widely used method for DOC and TDN analysis. However, uncertainties exist about the operation of the catalyst in the conversion process of DOC and TDN in the HTC method. In this study, five different ‘catalyst’ materials were tested for their blanks, calibration slopes, and conversion efficiency of DOC and TDN using the Shimadzu TOC 5000A total organic carbon analyser coupled to a Sievers NCD 255 nitrogen chemiluminescence detector. The materials included four metallic catalysts (Shimadzu and Johnson 0.5% Pt–alumina, 13% Cu(II)O–alumina, 0.5% Pd–alumina) and quartz beads. The results indicated that DOC blank signals for the HTC approach using metallic catalysts with an alumina support are higher compared with quartz beads, as a result of the amphoteric nature of the alumina. However, the slopes of the standard calibration graphs were lowest for DOC and TDN determinations on the quartz beads. The DOC recoveries for the metallic catalysts were close to 100% for all compounds tested, with the exception of ammonium pyrrolidine dithiocarbamate. Using quartz beads, poor recoveries were obtained for a range of organic compounds, including the commonly used calibration compounds potassium hydrogen phthalate and glycine. The TDN recoveries for all compounds were typically >90%, with the exception of NaNO2. Furthermore, analysis using the CuO–alumina and Pd–alumina catalysts and quartz beads showed low recoveries for NH4Cl. This study showed that catalyst performance should be verified on a regular basis using model compounds and blank checks made during every run, and that the Shimadzu 0.5% Pt–alumina material was an efficient catalyst for DOC and TDN analyses using the coupled total organic carbon–nitrogen chemiluminescence detector (TOC-NCD) analyser.  相似文献   

19.
Phorate and Terbufos adsorption onto four tropical soils   总被引:5,自引:0,他引:5  
Adsorption of Phorate and Terbufos onto four tropical soils was investigated in this study. It was found that the adsorption kinetics was fast and that the equilibrium was established within 6 h. Adsorption isothermal data could be well described by the Freundlich equation. It was demonstrated that the soils were more favorable for the adsorption of Terbufos than Phorate, which was due to the higher hydrophobicity of Terbufos (and its lower water solubility). The presence of organic compounds in soils played an important role. A higher organic content caused higher adsorption. A new term of Koc′, the Freundlich based organic content-normalized partition coefficient Koc′=K/foc was defined. In the above equation, K and foc are the Freundlich constant and the fraction by weight of organic content in the soils, respectively. It was demonstrated that the Koc′ was independent of the types of soils (or organic content). The pH effect was found to be insignificant for the adsorption of both pesticides. Finally, a competitive study demonstrated that the presence of the more strongly adsorbed Terbufos played a more important role than that of the more weakly adsorbed Phorate.  相似文献   

20.
An automatic extraction, preconcentration and clean-up module for the extraction of phenolic compounds from soils was developed; the separation and quantitation of each phenol is accomplished by GC-MS. The sorption-desorption of thirteen phenols on soils containing variable amounts of organic carbon (0.05-3.4%) and clay minerals (2-43%) at pH 5.7-8.6 was investigated. For this purpose, uncontaminated soils were spiked with 5 or 20 microg of each phenol per g of soil; the soils were then stored at 4 degrees C for at least 3 months prior to analysis in order to simulate analyte-matrix interactions other than material losses and environmental degradation in actual contaminated soils. The organic carbon content in acid and alkaline soils affects the sorption of chlorophenols but not that of alkylphenols. On the other hand, alkylphenols are preferentially sorbed by neutral soils, the process being influenced by the clay mineral content. Based on the results, alkylphenols interact more strongly with agricultural soils than do chlorophenols; also, both types of compound are less strongly sorbed by loamy sand soils owing to their increased sand contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号