首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Chemical vapor deposition is used to obtain Ir and Ir-Al2O3 coatings with a thickness of up to 5 μm and growth rate of 2.5 μm/h on steel substrates previously covered with an alumina layer. Tris-acetylacetonates of Ir(III) and Al(III) are used as precursors. The deposition process is carried out at the atmospheric pressure in the presence of hydrogen. The coatings obtained are studied by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. A dependence of the structure and composition of coatings on their preparation conditions is found.  相似文献   

2.
Catalytic performance of gallia-supported iridium catalysts in the reaction of selective hydrogenation of crotonaldehyde in the gas phase was studied and compared to that of platinum and ruthenium catalysts. The best catalytic properties in terms of the selectivity to crotyl alcohol are shown by 5 wt % Pt/α-Ga2O3 and 5 wt % Ir/α-Ga2O3 catalysts prepared from nonchlorine precursors: Pt(acac)2 and Ir(acac)3, but for the 5 wt % Pt/α-Ga2O3 a very high selectivity of 75% at the high conversion (ca. 60%) is observed. A high selectivity of galia-supported iridium and platinum catalysts was explained by the surface reducibility of gallium oxide leading to covering (decoration) of platinum and iridium by gallium suboxides and the promoting effect of gallium.  相似文献   

3.
Atmospheric plasma sprayed alumina–titania (Al2O3–13%TiO2), coated on stainless steel (XC18), were characterized. The coating structure and morphology were studied by scanning electron microscopy. Their presented micro cracks, laminar splats. The coatings were studied by X-ray diffraction. The main phase transformation is that of α-Al2O3 into metastable γ-Al2O3. The α-Al2O3 phase is due to the occurrence of partially melted particles Electrochemical behaviours of coatings were mainly investigated by potentiodynamic polarization and electrochemical impedance spectroscopy in 0.01 M [K3Fe(CN)6/K4Fe(CN)6] as a function of process parameters. Also, schematic equivalent circuit was proposed. The results were expected to facilitate the understanding and improvement of the coating behaviours.  相似文献   

4.
To enhance film conformality together with electrical property suitable for dynamic random access memory (DRAM) capacitor dielectric, the effects of oxidant and post heat treatment were investigated on aluminum and titanium oxide (Al2O3–TiO2) bilayer (ATO) thin film formed by atomic layer deposition method. For the conformal deposition of Al2O3 thin film, the O3 oxidant required a higher deposition temperature, more than 450 °C, while H2O or combined oxygen sources (H2O+O3) needed a wide range of deposition temperatures ranging from 250 to 450 °C. Conformal deposition of the TiO2 thin film was achieved at around 325 °C regardless of the oxidants. The charge storage capacitance, measured from the ATO bilayer (4 nm Al2O3 and 2 nm TiO2) deposited at 450 °C for Al2O3 and 325 °C for TiO2 with O3 oxidant on the phosphine-doped poly silicon trench, showed about 15% higher value than that of 5 nm Al2O3 single layer thin film without any increase of leakage current. To maintain the improved electrical property of the ATO bilayer for DRAM application, such as enhanced charge capacitance without increase of leakage current, upper electrode materials and post heat treatments after electrode formation must be selected carefully. Dedicated to Professor Su-Il Pyun on the occasion of his 65th birthday.  相似文献   

5.
Mixed IrO2–TiO2 oxides were prepared by the sol–gel method upon acid-catalysed hydrolysis of an iridium solution in ethanol mixed with titanium tetraethoxide in ethanol. The iridium solution was obtained by reaction of the sodium hexachloroiridate(IV) precursor in the presence of sodium ethoxide in ethanol. Gels were formed in all but the high-Ir samples. Analysis of the dried gels showed minority-phase enrichment at the surface and the presence of Ir(III), while microscopy showed evidence for dispersed iridium-containing nanoparticles (1–20 nm in diameter). XRD powder patterns of the calcined material showed peaks due to a small amount of crystalline NaCl impurity which could be removed by washing. This left amorphous phases, except in the Ir:Ti 3:2 case, which showed evidence for the presence of separate crystalline oxide phases: anatase, IrO2 and Ti x Ir1−x O2.  相似文献   

6.
Multilayered alumina film was deposited onto metallic substrate using cycles of dip-coating method. The film thickness was found not always growing linearly with the increase of the number of dipping cycles, and even a zero-growth in thickness was observed after 20 cycles of dip coatings. This phenomenon was found to be attributed to the dissolving behavior of alumina gel material in original sol. A heat treatment at a temperature higher than 230 °C was found to be able to effectively lower the dissolvability of Al2O3 gel material, but an extra high temperature, i.e., 600 °C led to the formation of cracks in the multilayered film due to the increase of interfacial tension force. It was examined by IR and XRD analyses that a heat treatment at 250 °C for 10 min before each coating process could yield an amorphous multilayered film with no crack formed after calcinations at 600 °C. A crack-free Al2O3 film with a thickness up to 2 μm after 22 cycles of dip coating process could be produced and it showed an excellent antioxidation performance for steel substrate.  相似文献   

7.
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g?1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.  相似文献   

8.
Due to the high specific capacities and environmental benignity, lithium-sulfur (Li-S) batteries have shown fascinating potential to replace the currently dominant Li-ion batteries to power portable electronics and electric vehicles. However, the shuttling effect caused by the dissolution of polysulfides seriously degrades their electrochemical performance. In this paper, Mn2O3 microcubes are fabricated to serve as the sulfur host, on top of which Al2O3 layers of 2 nm in thickness are deposited via atomic layer deposition (ALD) to form Mn2O3/S (MOS) @Al2O3 composite electrodes. The MOS@Al2O3 electrode delivers an excellent initial capacity of 1012.1 mAh g?1 and a capacity retention of 78.6% after 200 cycles at 0.5 C, and its coulombic efficiency reaches nearly 99%, giving rise to much better performance than the neat MOS electrode. These findings demonstrate the double confinement effect of the composite electrode in that both the porous Mn2O3 structure and the atomic Al2O3 layer serve as the spacious host and the protection layer of sulfur active materials, respectively, for significantly improved electrochemical performance of the Li-S battery.  相似文献   

9.
In this work we report the performance of permeation barriers based on organic/inorganic multilayer stacks. We have used PMMA-SiO2 (poly methyl methacrylate-silica) hybrid films synthesized through a sol–gel route as organic–inorganic components, whereas Al2O3 thin films were used as the inorganic component. The hybrid layers were deposited by dip coating and the Al2O3 by atomic layer deposition (ALD), films were prepared on polyethylene naphthalene (PEN) substrates. The permeability of the films and stacks is evaluated using helium as the diffusion gas in a custom made ultra-high vacuum system. The results show that permeability for PEN is reduced from 5 × 10−3 g/m2-day to about 9 × 10−5 g/m2-day for the best multiple barrier evaluated. Increased barrier properties are due to the increasing in the path and hence the lag-time of the permeating gas. In particular, we report the surface roughness of the different layers and its impact on the barrier performance. The hybrid layers reduced notably the roughness of the bare PEN substrate improving the quality of the Al2O3 layer in the barrier. The optical transmittance of the barriers in the visible region is higher than 80% in all the studied cases.  相似文献   

10.
Al2O3, Al2O3/Al and Al2O3–Al graded coatings were fabricated on China low activation martensitic steel and silicon substrates by RF magnetron sputtering. The coating composition and cross‐section morphologies were investigated using X‐ray photoelectron spectroscopy, Auger electron spectroscopy and field‐emission scanning electron microscopy. The mechanical properties of the coatings were studied using nanoindentation, wafer‐curvature measurements and microscratch tests. The results show that usable Al2O3–Al graded coatings could be fabricated. With a more continuous compositional gradient, the interface zone was more compact. The hardness and elastic modulus of Al2O3–Al graded coatings were less than those of Al2O3 coatings, but greater than those of Al2O3/Al coatings. After annealing at 773 K for 3 h, the hardness of Al2O3–Al graded coating showed a small increase. The residual stresses in Al2O3–Al graded coatings declined to about 0.3 GPa, compared with the 6.6 GPa for Al2O3 coating. The adhesion of Al2O3 was improved by deposition of Al or Al compositional gradient oxide layers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The physico-chemical characteristics and microstructure of cobalt silica gel catalysts with an Al2O3 additive (up to 10%) for the synthesis of hydrocarbons by the Fischer–Tropsch method are studied using a set of methods including X-ray diffraction, BET, IR spectroscopy, and temperature-programmed reduction of H2, as well as scanning and transmission electron microscopy. Phases with a spinel structure, Со3О4, CoAl2O4, and solid solutions on their basis are identified in the samples. The addition of Al2O3 changes the degree of heterogeneity and the orientation of the cobalt crystallites in the oxide and reduced forms of the catalysts. Addition of 1% Al2O3 stabilizes Со3О4 in the spinel form with a structure close to the normal one and promotes the formation of cobalt with a unimodal distribution of particles with an average size of 8 nm. The catalyst is characterized by maximum activity and selectivity with respect to C5+ carbons.  相似文献   

12.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

13.
(1.2–8.3)%FeOх/Al2O3 monolith catalysts have been prepared by impregnating alumina with aqueous solutions of iron(III) nitrate and oxalate and have been tested in NH3 oxidation and in the selective decomposition of N2O in mixtures resulting from ammonia oxidation over a Pt–Rh gauze pack under conditions of nitric acid synthesis (800–900°C). In the case of the support calcined at 1200°C, the catalyst is dominated by bulk Fe2O3 particles localized on the Al2O3 surface. The activity of these samples in both reactions decreases with a decreasing active component content, thus limiting the potential of Fe2(C2O4)3 · 5H2O, an environmentally friendlier but poorly soluble compound, as a substitute for Fe(NO3)3 · 9H2O. Decreasing the support calcination temperature to 1000°C or below leads to the formation of a highly defective Fe–Al–O solid solution in the (1.2–2.7)%FeOх/Al2O3 catalysts. The surface layers of the solid solution are enriched with iron ions or stabilize ultrafine FeOх particles. The catalytic activity of these samples in both reactions is close to the activities measured for ~8%FeOх/Al2O3 samples prepared using iron nitrate.  相似文献   

14.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

15.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

16.
The effect of working pressure on the properties of Al2O3 films was investigated in direct-type plasma-enhanced atomic layer deposition. Increasing pressure yielded a denser Al2O3 film and a thinner SiOx interlayer, but only slightly affected the Al2O3 film thickness. The diffusivity of O atoms was evaluated by using time-averaged emission intensities of the He I and O I lines. The consumption rate of O radicals and the production rate of H radicals, as functions of plasma exposure time, were deduced from analyzing temporal evolutions of emission intensities of the O I and Hα lines, respectively. The amounts of C and H impurities in the film were confirmed by using an X-ray photoelectron spectroscopy. Finally, the mechanisms by which the working pressure affected the properties of Al2O3 films were discussed based on the experimental results.  相似文献   

17.
Metal gold particles were supported onto the surface of aluminum oxide by physical vapor deposition. The effects of thermal treatments at 30?800°C both in a vacuum and in an atmosphere of O2 (5 mbar), CO (5 mbar), or a mixture of CO + O2 (5 mbar of each) on the samples of Au/Al2O3 were studied by X-ray photoelectron spectroscopy. An increase in the Au4f line intensity in the course of gold deposition was accompanied by a shift of this line toward smaller binding energy. Upon the supporting of a maximum quantity of gold, the binding energy E b(Au4f 7/2) became smaller than the value characteristic of the bulk metal. It was hypothesized that this can be explained by the formation of negatively charged Auδ? particles due to electron density transfer from the support to the particles of gold. In the course of the heating of Au/Al2O3 in a vacuum or in a reaction atmosphere, the agglomeration of small gold particles occurred; this fact manifested itself in a decrease in the atomic ratio [Au]/[Al]. In all of the atmospheres, the Au particles supported on Al2O3 exhibited high thermal stability; considerable changes in the ratio [Au]/[Al] were observed only at temperatures higher than 600°C.  相似文献   

18.
Ag/Al2O3 is a promising catalyst for the selective catalytic reduction (SCR) by hydrocarbons (HC) of NO x in both laboratory and diesel engine bench tests. New developments of the HC-SCR of NO x over a Ag/Al2O3 catalyst are reviewed, including the efficiencies and sulfur tolerances of different Ag/Al2O3-reductant systems for the SCR of NO x ; the low-temperature activity improvement of H2-assisted HC-SCR of NO x over Ag/Al2O3; and the application of a Ag/Al2O3-ethanol SCR system with a heavy-duty diesel engine. The discussions are focused on the reaction mechanisms of different Ag/Al2O3-reductant systems and H2-assisted HC-SCR of NO x over Ag/Al2O3. A SO2-resistant surface structure in situ synthesized on Ag/Al2O3 by using ethanol as a reductant is proposed based on the study of the sulfate formation. These results provide new insight into the design of a high-efficiency NO x reduction system. The diesel engine bench test results showed that a Ag/Al2O3-ethanol system is promising for catalytic cleaning of NO x in diesel exhaust.  相似文献   

19.
Alterations in the phase composition, porosity, and surface morphology of coatings are examined following the insertion of a quantity of Ta2O5 into active coatings prepared from IrO2 or IrO2 + RuO2 + TiO2 (OIRTA). It is shown that even an insignificant concentration of Ta2O5 in a coating renders it substantially amorphous and leads to the appearance of a large number of wide protracted cracks in the coating. The latter extends the surface of anodes and boosts their apparent catalytic activity in the chlorine evolution reaction. In addition, this accelerates the diffusion of chloride ions toward the front surface of anodes, which noticeably reduces the overvoltage of the chlorine evolution reaction when manufacturing sodium chlorate. The coatings’ amorphization and the development of their surface substantially reduce the corrosion resistance of these anodes as compared with OIRTA.  相似文献   

20.
Monodispersed and hydrophobic ZnO/Al2O3 composite nanoparticles are prepared by a nonhydrolytic sol–gel method. ZnCl2 and AlCl3 are dissolved in acetone and used as precursors. Oleic acid is adopted as an oxygen donor. The tribology properties of the prepared ZnO/Al2O3 composite nanoparticles are studied by the four-ball friction and thrust ring friction test. It is demonstrated that the average friction coefficient and the wear scar diameter are reduced by 37.5 and 26.2%, respectively, in comparison with pure lubricating oil. Moreover, the ZnO/Al2O3 composite nanoparticles bear the merits of ZnO and Al2O3 when used as lubricant additives, exhibiting both excellent antifriction and antiwear behaviors simultaneously. The ZnO/Al2O3 composite nanoparticles improve the lubrication effect not only by turning the sliding friction into rolling friction, but also forming a hard Al2O3 protective film onto the thrust-ring surface containing ZnO/Al2O3 nanoparticles, which have much potentiality in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号