首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
掺稀土的LiM0.02Mn1.98O4锂离子电池正极材料   总被引:11,自引:0,他引:11  
自1991年Ohzuku[1] 、 Tarascon[2]等成功地将LiMn2O4用于锂离子电池正极以来, 人们对尖晶石LiMn2O4的电化学性质进行了广泛的研究[3]. 尖晶石LiMn2O4的一个缺点是充放电过程中, 特别在较高温度(如50 ℃)下, 其容量下降明显. Zhou等[4]详细研究了该过程, 发现造成容量下降的主要原因是充电状况下正极LiMn2O4的溶解, 由于Jahn-Taller效应生成不稳定的两相结构以及电解液的分解等. 为了提高LiMn2O4的充放电循环稳定性, 人们除了优化合成条件和溶液组分外, 主要采用添加少量掺杂元素(M), 部分替代LiMn2O4中的Mn, 制得LiMxMn2-xO4, 以抑制溶解和Jahn-Taller效应引起的结构变化.  相似文献   

2.
以NiSO4和MnSO4为原料,在用共沉淀法经二次干燥制备锂离子电池正极材料LiNi0.5Mn1.5O4的前驱体时,加入水合肼进行还原处理.实验结果发现:经还原处理的前驱体制备正极材料LiNi0.5Mn1.5O4的充放电比容量远远高于同样条件下不经水合肼还原处理的前驱体制备的正极材料的充放电比容量,而且处理前驱体制备的正极材料在高倍率放电条件下电化学行为更好.粉末X射线衍射(XRD)和扫描电镜(SEM)测试结果表明,用还原剂水合肼处理的前驱体合成的样品为单一的尖晶石结构,晶粒呈规则的八面体形貌,没有杂质相,而未处理前驱体合成的样品则含有少量的杂质相.这种杂质相是在前驱体的制备过程中由于Mn(OH)2被O2氧化而形成难溶Na0.55Mn2O4.1.5H2O化合物,最终转变为Na0.7MnO2.05.  相似文献   

3.
尖晶石LiMn_2O_4的表面改性研究   总被引:10,自引:0,他引:10  
采用溶胶_凝胶法合成尖晶石LiMn2 O4 ,并以LiCoO2 对其进行包覆 ,用XRD、SEM、EPMA等方法对修饰的尖晶石结构和性能进行研究 .结果表明 ,经包覆的LiMn2 O4 在 70 0℃焙烧 10h所得的晶粒是表层富含Co的立方尖晶石 ,而且晶粒中Co3+的含量呈现出从表到里递减的梯度分布 .以该材料作锂离子电池正极 ,虽初始容量稍有降低 ,但能有效地降低Mn2 +在电解质中的溶解 ,而且对Jahn_Teller效应有一定的抑制作用 ,包覆的LiMn2 O4 尖晶石正极材料比未包覆的有更好的循环性能  相似文献   

4.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

5.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

6.
锂离子电池LiMn2O4正极材料的高温改性;锂离子电池;正极材料;尖晶石;LiMn2O4;包覆  相似文献   

7.
周华  张海朗 《合成化学》2007,15(B11):55-55
锂锰尖晶石LiMn2O4被认为是当前最有前途的锂离子电池的正极材料之一;特别在用于动力锂离子电池方面。但是LiMn2O4在充一放电循环过程中会发生严重的容量衰减:而产生容量衰减的主要原因是其结构的不稳定性、锰的溶解和John-Teller效应。通过降低材料中的Mn^3+来抑制Jahn-Teller效应的发生,可部分改善LiMn2O4尖晶石的循环性能。  相似文献   

8.
锂锰尖晶石LiMn2O4被认为是当前最有前途的锂离子电池的正极材料之一[1];特别在用于动力锂离子电池方面.但是LiMn2O4在充-放电循环过程中会发生严重的容量衰减;而产生容量衰减的主要原因是其结构的不稳定性[2-3]、锰的溶解[4]和John-Teller效应[5].  相似文献   

9.
原位氧化还原沉淀水热合成法制备LixMn2O4尖晶石   总被引:3,自引:0,他引:3  
Li xMn2O4尖晶石是新一代的锂离子二次电池正极材料 [1], 其合成方法对材料的电化学性质影响很大[2].常规合成大多采用高温固相反应法, 此法具有反应温度高, 反应时间长, 容易产生缺陷和产物不纯净等缺点, 导致所合成的锂离子二次电池正极材料的性能较差. 目前用水热合成法制备电池正极材料Li xMn2O4尖晶石尚未见文献报道. 本文在常规水热合成法的基础上采用原位氧化还原沉淀水热合成法 [3]制备前驱物, 该法合成条件更温和, 而且使材料的综合性能得到了改善和提高.   相似文献   

10.
方铁锰矿Mn2O3粉体的水热合成与表征   总被引:1,自引:0,他引:1  
方铁锰矿型 Mn2 O3是固相法合成锂离子二次电池正极材料 L i Mn2 O4 的最佳原料之一 [1] .以其为锰源 ,可以很容易地制备锂离子二次电池正极材料 L i Mn2 O4 尖晶石 .采用其它合成方法都难以得到方铁锰矿 Mn2 O3的纯相 ,而是得到含有 α,β和 γ型的混合相 ,这对合成性能优良的正极材料 L i Mn2 O4极为不利[2 ] .采用水热合成法不仅可以人工合成沸石 ,而且已广泛用于合成多种无机功能材料[3~ 5] .无机原位氧化还原沉淀水热合成法 [6 ]可使多步反应的分子在原位水平上进行接触和反应 ,分子的扩散自由程大大缩短 ,因而降低了扩散的时间…  相似文献   

11.
采用高温固相反应法制备改性的LiMn2O4锂离子电池正极材料.利用SEM、XRD等方法表征产物的结构特性.结果表明:所得产物均具尖晶石型LiMn2O4结构,该样品经Li2CO3改性后用作锂离子电池正极,于常温和高温下的循环性能均得到明显改善.  相似文献   

12.
朱立才  袁中直  李伟善 《电化学》2004,10(2):168-174
应用现场紫外 可见吸收光谱研究碱性溶液中电解MnO2(EMD)放电机理.结果表明,对EMD电极的放电还原,包括两个单电子过程,其第1电子还原又分为3步:①还原MnO2颗粒表面和阳离子空位附近的Mn4+离子,②还原斜方锰矿中的Mn4+离子,③还原软锰矿中的Mn4+离子.第2电子还原是将溶解的Mn3+还原成Mn2+,进一步转化成Mn(OH)2和Mn3O4.  相似文献   

13.
尖晶石LiMn2O4的改性研究   总被引:4,自引:0,他引:4  
由于资源丰富、价格便宜、易制备、对环境无污染、可回收利用等优点,尖晶石型LiMn2O4成为锂离子二次电池中最有希望的正极材料[1~3]。然而,在高电压充、放电条件下,由于电极中锰的溶解和Jahn鄄Teller效应的发生,会造成LiMn2O4容量迅速衰减[4~6]。为了改善LiMn2O4的电化学性能,研究者主要通过优化合成条件及合成方法来控制产品的粒径分布与形貌,以利于锂离子的脱、嵌[7,8];用掺杂的方法以稳定其结构,抑制Jahn鄄Teller效应的发生[9,10];用表面修饰的方式来减少活性物质与电解液的直接接触从而降低Mn的溶解[11,12]。掺杂方面,Co3 不仅有…  相似文献   

14.
陈云  经江红 《化学教育》2017,38(5):79-81
实验探究硫化钠溶液与高锰酸钾溶液在滴加顺序、用量、酸碱性不同的情况下的反应情况,理论分析不同现象的原因。在酸性条件下MnO4-被还原为Mn2+,S2-被氧化为SO42-,较高浓度MnO4-与Mn2+反应产生MnO2棕褐色沉淀,随着Na2S溶液的加入,反应体系由酸性过渡到碱性,Mn2+转化为Mn(OH)2白色沉淀。在强碱性条件下,观察到MnS肉红色沉淀,但是在较稀Na2S溶液中加入较浓KMnO4溶液观察到S淡黄色沉淀,在Na2S溶液中加入极稀KMnO4溶液无现象。  相似文献   

15.
LiCoO2对LiMn2O4改性过程的研究   总被引:4,自引:0,他引:4  
在LiCoO2、LiMn2O4、LiNiO2这三种锂离子电池正极材料中,尖晶石LiMn2O4由于具有价廉、对环境友好、使用安全的显著优点,被普遍认为是最有希望的新型正极材料。但该材料在高温下较快的容量衰减制约了其规模应用[1~3]。为改善LiMn2O4的高温性能,各国学者普遍采用掺杂法,即在制备L  相似文献   

16.
调研了全球锂离子电池正极材料LiCoO2、LiNiO2、LiMn2O4、LiFePO4 LiNi0.8 Co0.2 O2和Li(CoMnNi)1/3O2的学术研究论文和技术专利申请与授权数按年和语言分布情况。综述了前4种材料作锂离子电池正极材料尚存在的问题和解决对策进展。例如,通过掺杂其他元素、表面包覆、细化材料颗粒及改善正极结构设计来提高正极材料的充放电容量、寿命、功率密度和电池高功率密度使用时的安全性。  相似文献   

17.
采用喷雾热解的方法合成了单相的尖晶石LiMn2O4的颗粒,结构研究结果表明用这种喷雾造粒的方法可以得到颗粒细小匀的LiMn2O4粉体,其组装的电池具有良好的电化学容量和循环性能,表明这是一种可推广的合成锂离子电池正极材料LiMn2O4粉体的方法。  相似文献   

18.
用固相反应合成了LiCoO2掺杂改性的LiMn2O4锂离子电池正极材料,优化了LiMn2O4的改性路径及制备条件.利用SEM、XRD对产物的结构进行了表征,并测试了产物的电化学性能.结果表明:所得产物均具有尖晶石型LiMn2O4结构.LiCoO2的掺入增加了尖晶石结构的稳定性,改善了尖晶石型LiMn2O4的充放电循环性能.  相似文献   

19.
采用表面掺杂包覆改性的方法对LiMn2O4尖晶石型锂离子电池正极材料进行改性.以Al为表面掺杂元素,Al(NO3)3为原料,研究了Al3+掺杂量为7.1%(原子分数)时不同温度(300、400、500、600、700、750、800℃)下的改性效果.研究发现,随着热处理温度的升高,改性样品的最大比容量先升高后降低,在700℃达到最大值;循环衰减先增大后降低再增大;这是由于随着热处理温度的升高,包覆层逐渐分解并与LiMn2O4颗粒反应固溶,在750℃完全固溶,衰减达到极小值,而后固溶层向颗粒内部扩散,导致包覆层对颗粒免受电解液溶解的保护能力变弱,因而容量衰减增大.其中700℃热处理5h的样品最大比容量为133.6mAh·g-1,循环50周衰减3.4%.研究表明Al3+表面掺杂包覆改性有利于促进LiMn2O4尖晶石型锂离子电池正极材料的商业化生产,具有大规模应用的前景.  相似文献   

20.
采用喷雾热解的方法合成了单相的尖晶石LiMn2O4的颗粒,结构研究结果表明用这种喷雾造粒的方法可以得到颗粒细小匀的LiMn2O4粉体,其组装的电池具有良好的电化学容量和循环性能,表明这是一种可推广的合成锂离子电池正极材料LiMn2O4粉体的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号