首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
利用水热法合成核壳结构Au@SiO2@CeO2纳米微球,制备了一系列双层结构复合光阳极并应用于染料敏化太阳能电池(DSSC)。研究表明:当CeO2纳米微球和核壳结构Au@SiO2@CeO2纳米微球应用于DSSC光阳极散射层时,电池的光电转化效率有了显著提高。相对于纯TiO2(P25)光阳极,P25/CeO2纳米球光阳极电池的DSSC光电性能提高了15.3%,P25/Au@SiO2@CeO2纳米球光阳极电池的光电性能提高了27.9%。DSSC光电性能的提高主要归因于2个方面:一方面,Au纳米粒子的表面等离子体共振效应有效提高了光阳极薄膜的光散射效应。另一方面,CeO2具有较高的染料负载能力,核壳球形结构具有较高的比表面积,增强了光的散射效应,提高了电子传输能力。  相似文献   

2.
利用改进型的溶胶-凝胶法, 制得了由锐钛矿相纳米颗粒组成的TiO2多孔微纳小球。通过调节前驱物浓度, 合成出粒径可控的尺寸分别为100, 175, 225, 475 nm的TiO2微纳小球, 并通过电泳沉积法将合成出的小球作为光散射层引入到染料敏化太阳电池(DSSC)中。由于这种微纳小球在具备良好的光散射性能的同时也具备较高的染料吸附量, 因此相较于基于纳米颗粒的单层结构的DSSC拥有更高的光电转换效率。通过比较分析, 粒径尺寸为475 nm的微球作为光散射层的DSSC光电转换效率可以达到6.3%, 较之于基于纳米颗粒的DSSC提高了30%。  相似文献   

3.
采用水热法制备了一种刺球状TiO2(NT),将其作为光散射中心,与纳米晶TiO2混合,制备成一种底层为P25薄膜(作为染料吸收层),上层为添加NT散射层的混合结构的薄膜光阳极。探讨了NT添加量对薄膜性能的影响,实验结果表明,当NT与P25粉体的质量比为35%时电池光电性能最优,电池短路光电流密度为14.30 mA·cm-2,其光电转换效率达到7.38%。质量比继续增大,当达到50%时电池性能有所下降,光电转换效率降为5.99%,同时染料吸附量也由73.2 μmol·cm-2降到70.1 μmol·cm-2。这表明过量的大颗粒TiO2刺球散射中心会减少光阳极的比表面积从而降低染料的有效吸附量,并且还会引起不必要的反向散射,只有适量的散射中心才能得到最佳性能的太阳能电池器件。  相似文献   

4.
采用模板剂法一步合成分级结构的介孔TiO2微球, 考察了烷基胺类模板剂中烷基链长度对介孔TiO2微球合成及性能影响. 将其应用于染料敏化太阳能电池的光阳极半导体薄膜中, 得到了9.5%-10.1%的高能量转换效率. X射线衍射(XRD)、物理吸附仪(BET)、扫描电镜(SEM)等的分析结果表明: 分级结构介孔TiO2微球的晶相为纯锐钛矿型; 介孔TiO2微球表面粗糙, 的纳米粒子堆积形成, 使微球具有介孔性质和较适宜的比表面积. 介孔TiO2微球堆积形成了利于物质扩散的通道并具有良好的光散射效果; 同时微球介孔粗糙表面保证了染料的大量吸附, 从而提高了电池的光电流. 通过电化学阻抗分析结果验证了分等级结构介孔TiO2微球光阳极有利于电解液的传输和物质扩散的优异性能.  相似文献   

5.
以四氯化钛、盐酸为原料,制备出花状TiO2纳米微球,利用扫描电子显微镜(SEM)、X射线衍射(XRD)等测试方法,对样品的结构和形貌进行了表征。为了提高TiO2微球电池的光电性能,利用TiO2微球作为反射层构造了双层结构的薄膜电极,结果表明,双层结构染料敏化太阳能电池在100 mW·cm-2(1.5 G)光照条件下,短路光电流Jsc为17.64 mA·cm-2,开路光电压Voc为0.74 V,填充因子FF为0.63和光电转化效率η为8.33%。相比TiO2微球制备的太阳能电池,双层结构染料敏化太阳能电池光电转化效率提高至5.3倍。最后对电极中染料的吸附量、电极的光散射性能和电池的电化学阻抗做了进一步研究和分析,研究表明,双层结构电池增强光的捕获能力,从而提高光伏性能。  相似文献   

6.
以空心球状TiO2为基体、以片状TiO2为骨架,采用刮刀法制备了染料敏化太阳能电池的多孔TiO2光阳极薄膜。光电转化效率测试结果表明,当作为骨架支撑材料的片状TiO2含量为20wt%时,光阳极薄膜组装成太阳能电池的光电转化效率达到最高值4.53%,比商业P25制备的无孔无骨架TiO2薄膜电池(4.06%)及无骨架结构的多孔TiO2薄膜电池(4.17%)的性能均有显著提高。当片状TiO2的最佳含量为20wt%电池薄膜厚度为33 μm时,太阳能电池光电转化效率进一步提升为7.06%。光电性能增强的原因是骨架结构有利于快速传输电子并增大染料吸附量。本研究通过设计制备具有骨架结构的多孔TiO2薄膜为提高染料敏化太阳能电池性能提供了新的思路。  相似文献   

7.
分级微纳结构ZnO空心球的制备及其光电转换性能   总被引:1,自引:0,他引:1  
以醋酸锌为锌源,二甘醇为溶剂,通过一种改进的溶剂热法制备出具有分级微纳结构的ZnO空心球。X射线衍射(XRD),扫描电子显微术(SEM),N2吸附脱附等表征结果显示此ZnO材料的初级结构为纳米颗粒,次级结构为该纳米颗粒构筑的微米级多分散小球。聚焦离子束(FIB)切割实验表明,小球内部为中空结构。这种新颖的复合结构应用于染料敏化太阳电池(DSSC)领域,有两大优势:其初级结构提供了大的比表面以吸附更多染料分子,同时其次级结构和孔结构可以起到光散射中心的作用,提高光的利用率,从而最终提高了电池的光电转换效率。  相似文献   

8.
贺凤龙  王苹  黄彦民 《无机化学学报》2015,31(11):2174-2180
以空心球状TiO2为基体、以片状TiO2为骨架,采用刮刀法制备了染料敏化太阳能电池的多孔TiO2光阳极薄膜。光电转化效率测试结果表明,当作为骨架支撑材料的片状TiO2含量为20wt%时,光阳极薄膜组装成太阳能电池的光电转化效率达到最高值4.53%,比商业P25制备的无孔无骨架TiO2薄膜电池(4.06%)及无骨架结构的多孔TiO2薄膜电池(4.17%)的性能均有显著提高。当片状TiO2的最佳含量为20wt%电池薄膜厚度为33μm时,太阳能电池光电转化效率进一步提升为7.06%。光电性能增强的原因是骨架结构有利于快速传输电子并增大染料吸附量。本研究通过设计制备具有骨架结构的多孔TiO2薄膜为提高染料敏化太阳能电池性能提供了新的思路。  相似文献   

9.
利用改进型的溶胶-凝胶法,制得了由锐钛矿相纳米颗粒组成的TiO2多孔微纳小球。通过调节前驱物浓度,合成出粒径可控的尺寸分别为100,175,225,475 nm的TiO2微纳小球,并通过电泳沉积法将合成出的小球作为光散射层引入到染料敏化太阳电池(DSSC)中。由于这种微纳小球在具备良好的光散射性能的同时也具备较高的染料吸附量,因此相较于基于纳米颗粒的单层结构的DSSC拥有更高的光电转换效率。通过比较分析,粒径尺寸为475 nm的微球作为光散射层的DSSC光电转换效率可以达到6.3%,较之于基于纳米颗粒的DSSC提高了30%。  相似文献   

10.
杨梅  时振领  徐楠  毛丹  王丹 《应用化学》2018,35(8):902-915
染料敏化太阳能电池(Dye-Sensitized Solar Cells,DSSC)以其低成本、易加工、高转化等特点受到广泛关注,半导体光阳极是DSSC的重要组成部分,其组成和微观结构直接影响电池性能,中空微/纳结构能够提供高表面积、增加染料负载量、促进光捕获,增强电子传输,因而成为近年来光阳极材料领域的一个热点内容。 本文综述了中空微/纳结构光阳极材料的研究进展,主要包括空心球、空心盒、核-壳结构、多级空心、多壳层结构等,并着重分析了各个结构特征与光电转换效率的关系和增益机制,探讨了中空微/纳结构光阳极面临的挑战及发展趋势。  相似文献   

11.
We present a simple sol-gel hydrothermal process for the fabrication of a double-layered structure composed of a TiO2 nanorod overlayer and TiO2 nanoparticle-embedded ZnO nanoflower (ZNFs@TNPs-TNRs) underlayer. The ZNFs@TNPs-TNRs was used as a photoanode in dye-sensitized solar cells (DSSCs) and their photovoltaic performance was analyzed. The ZNFs@TNPs-TNRs can enhance the adsorption of N719 dyes, charge transport, and light scattering. The cell performances can be maximized by optimizing thickness ratio and total thickness of the double-layered photoanode, and the preliminary results demonstrate that a promising power conversion efficiency (PCE) of 8.01% is determined on the DSSC with ZNFs@TNPs-TNRs anode, yielding a 28.9% enhancement in the PCE in comparison to pristine TiO2–P25 nanoparticle-based DSSC.  相似文献   

12.
采用模板辅助法制备了SnO2/TiO2复合空心球,样品直径为1.5~4.0μm,比表面积达到了92.9 m^2·g^-1,复合空心球表现出优越的光散射性能.以这种复合空心球作为染料敏化太阳能电池的光阳极,电池的光电转换效率可达到7.72%,高于SnO2微米球(2.70%)和TiO2微米球(6.26%).此外,以锐钛矿型TiO2纳米晶作为底层,SnO2/TiO2复合空心球作为光散射层制备的双层结构光阳极,电池光电转换效率进一步提升至8.43%.  相似文献   

13.
A galvanic replacement strategy has been successfully adopted to design AgxAu1–x@CeO2 core@shell nanospheres derived from Ag@CeO2 ones. After etching using HAuCl4, the Ag core was in situ replaced with AgxAu1–x alloy nanoframes, and void spaces were left under the CeO2 shell. Among the as-prepared AgxAu1–x@CeO2 catalysts, Ag0.64Au0.36@CeO2 shows the optimal catalytic performance, whose catalytic efficiency reaches even 2.5 times higher than our previously reported Pt@CeO2 nanospheres in the catalytic reduction of 4-nitrophenol (4-NP) by ammonia borane (AB). Besides, Ag0.64Au0.36@CeO2 also exhibits a much lower 100% conversion temperature of 120 °C for catalytic CO oxidation compared with the other samples.  相似文献   

14.
以水热法为基础,向其溶胶中掺入适量的P25(二氧化钛粉体),来制备纳晶TiO2胶体,以纳晶TiO2为电子传输体组装染料敏化太阳能电池.通过XRD、SEM、UV-vis和电池的光电性能测试,来分析掺入P25对染料敏化太阳能电池性能的影响.结果表明,加入适量P25([P25]/[Ti]=0.2)后,染料敏化太阳能电池性能达到最佳值,在100 mW/cm2光照条件下,光电转换效率达到5.4%.  相似文献   

15.
The shell-in-shell structured TiO2 hollow microspheres with enhanced light scattering ability were synthesized via a facile one step hydrothermal process. The diameter of the microsphere is about 1.5 μm, the core of the unique shell-in-shell structure is composed of TiO2 nanoparticles with a diameter of about 15 nm, while the shell is constructed with ∼50 nm TiO2 nanocubes. The hollow space between the outer shell and the inner shell is about 230 nm. The formation mechanism of the unique shell-in-shell structure is interpreted. The design and the optimized application of shell-in-shell structured TiO2 hollow microspheres in the light-trapping perovskite solar cells are also investigated. Owing to the light scattering properties of the shell-in-shell structure of the hollow microsphere, the optimized photoelectrode exhibits an enhanced photoelectric conversion efficiency of 4.29% using perovskite CH3NH3PbI3 as the sensitizer. The shell-in-shell hollow TiO2 microsphere shows a 21.2% increase in conversion efficiency when compared with P25 nanoparticels photoanode. The conversion efficiency enhancement is mainly attributed to the increase of short-current density induced by the light scattering effect.  相似文献   

16.
Hollow structures show both light scattering and light trapping, which makes them promising for dye‐sensitized solar cell (DSSC) applications. In this work, nanoparticulate hollow TiO2 fibers are prepared by layer‐by‐layer (LbL) self‐assembly deposition of TiO2 nanoparticles on natural cellulose fibers as template, followed by thermal removal of the template. The effect of LbL parameters such as the type and molecular weight of polyelectrolyte, number of dip cycles, and the TiO2 dispersion (amorphous or crystalline sol) are investigated. LbL deposition with weak polyelectrolytes (polyethylenimine, PEI) gives greater nanoparticle deposition yield compared to strong polyelectrolytes (poly(diallyldimethylammonium chloride), PDDA). Decreasing the molecular weight of the polyelectrolyte results in more deposition of nanoparticles in each dip cycle with narrower pore size distribution. Fibers prepared by the deposition of crystalline TiO2 nanoparticles show higher surface area and higher pore volume than amorphous nanoparticles. Scattering coefficients and backscattering properties of fibers are investigated and compared with those of commercial P25 nanoparticles. Composite P25–fiber films are electrophoretically deposited and employed as the photoanode in DSSC. Photoelectrochemical measurements showed an increase of around 50 % in conversion efficiency. By employing the intensity‐modulated photovoltage and photocurrent spectroscopy methods, it is shown that the performance improvement due to addition of fibers is mostly due to the increase in light‐harvesting efficiency. The high surface area due to the nanoparticulate structure and strong light harvesting due to the hollow structure make these fibers promising scatterers in DSSCs.  相似文献   

17.
One‐dimensional (1D) TiO2 nanostructures are desirable as photoanodes in dye‐sensitized solar cells (DSSCs) due to their superior electron‐transport capability. However, making use of the DSSC performance of 1D rutile TiO2 photoanodes remains challenging, mainly due to the small surface area and consequently low dye loading. Herein, a new type of photoanode with a three‐dimensional (3D) rutile‐nanorod‐based network structure directly grown on fluorine‐doped tin oxide (FTO) substrates was developed by using a facile two‐step hydrothermal process. The resultant photoanode possesses oriented rutile nanorod arrays for fast electron transport as the bottom layer and radially packed rutile head‐caps with an improved large surface area for efficient dye adsorption. The diffuse reflectance spectra showed that with the radially packed top layer, the light‐harvesting efficiency was increased due to an enhanced light‐scattering effect. A combination of electrochemical impedance spectroscopy (EIS), dark current, and open‐circuit voltage decay (OCVD) analyses confirmed that the electron‐recombiantion rate was reduced on formation of the nanorod‐based 3D network for fast electron transport. As a resut, a light‐to‐electricity conversion efficiency of 6.31 % was achieved with this photoanode in DSSCs, which is comparable to the best DSSC efficiencies that have been reported to date for 1D rutile TiO2.  相似文献   

18.
Structurally thermostable mesoporous anatase TiO2 (m‐TiO2) nanoparticles, uniquely decorated with atomically dispersed SiO2, is reported for the first time. The inorganic Si portion of the novel organosilane template, used as a mesopores‐directing agent, is found to be incorporated in the pore walls of the titania aggregates, mainly as isolated sites. This is evident by transmission electron microscopy and high‐angle annular dark field scanning transmission electron microscopy, combined with electron dispersive X‐ray spectroscopy. This type of unique structure provides exceptional stability to this new material against thermal collapse of the mesoporous structure, which is reflected in its high surface area (the highest known for anatase titania), even after high‐temperature (550 °C) calcination. Control of crystallite size, pore diameter, and surface area is achieved by varying the molar ratios of the titanium precursor and the template during synthesis. These mesoporous materials retain their porosity and high surface area after template removal and further NaOH/HCl treatment to remove silica. We investigate their performance for dye‐sensitized solar cells (DSSCs) with bilayer TiO2 electrodes, which are prepared by applying a coating of m‐TiO2 onto a commercial titania (P25) film. The high surface area of the upper mesoporous layer in the P25–m‐TiO2 DSSC significantly increases the dye loading ability of the photoanode. The photocurrent and fill factor for the DSSC with the bilayer TiO2 electrode are greatly improved. The large increase in photocurrent current (ca. 56 %) in the P25–m‐TiO2 DSSC is believed to play a significant role in achieving a remarkable increase in the photovoltaic efficiency (60 %) of the device, compared to DSSCs with a monolayer of P25 as the electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号