首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adsorption of atrazine on soils: model study   总被引:1,自引:0,他引:1  
The adsorption of the widely used herbicide atrazine onto three model inorganic soil components (silica gel, gamma-alumina, and calcite (CaCO(3)) was investigated in a series of batch experiments in which the aqueous phase equilibrated with the solid, under different solution conditions. Atrazine did not show discernible adsorption on gamma-alumina (theta=25 degrees C, 3.8相似文献   

2.
We demonstrate practical aerosol-assisted approach to synthesize spherical mesoporous titania particles with high surface areas. Scanning electron microscopy observation of the spray-dried products clearly shows spherical morphology. To remove surfactants and enhance crystallinity, the spray-dried products are calcined under various temperatures. The crystalline structures inside the particles are carefully detected by wide-angle XRD measurements. With increase of the calcination temperatures, anatase crystal growth proceeds and transformation from anatase to rutile is occurred. The effect of various calcination temperatures on the mesostructures is also studied by using N2 adsorption desorption isotherms. The mesoporous titania particles calcined at 350, 400, and 500 °C exhibit type IV isotherms with a capillary condensation step and shows a hysteresis loop, which is a characteristic of mesoporous materials. The reduction in the surface areas and the pore volumes is confirmed by increasing the calcination temperatures, while the average pore diameters are increased gradually. This is attributed to the distortion of the mesostructures due to the grain growth of the anatase phase and the transformation to the rutile phase during the calcination process. As a preliminary experimental photocatalytic activity, oxidative decomposition of acetaldehyde under UV irradiation is examined. The mesoporous titania calcined at 400 °C shows the highest photocatalytic activity, due to both high surface area and well-developed anatase crystalline phase.  相似文献   

3.
Mesoporous titania powders were synthesized using the triblock copolymer F127 (PEO(106)PPO(70)PEO(106)) as a surfactant template. Two different procedures (ammonia and/or low-temperature treatment at 393 K) were successfully applied to stabilize the mesoporous structure, resulting in significantly increased surface areas and pore volumes with respect to those of the untreated titania powders. Three of these samples were chosen for further investigation by adsorption microcalorimetry. These samples are characterized by high surface areas (varying between 340 and 141 m (2) g (-1)) and a varying degree of crystallization (anatase phase). The samples were compared to nanosized anatase particles treated to 873 K. The adsorption microcalorimetry was carried out using nitrogen and carbon dioxide at 77 and 303 K, respectively, to gain complementary information about the surfaces. Nitrogen at 77 K showed, for the three samples, adsorption enthalpies at low coverage of similar values, approximately -19 to -22 kJ mol (-1), indicating that the probe gas interacts with similar energetic surface sites. Two distinct energetic regions are observed, the first of which increases with increasing pretreatment temperature, which can be related to increased sample crystallinity. The adsorption of carbon dioxide at 303 K showed high adsorption enthalpies (up to approximately 65-80 kJ mol (-1)), highlighting strong interactions of the carbon dioxide with the titania surface at low pressures. Finally, the CO(2) adsorption properties of the titania samples (adsorbed amount and enthalpies of adsorption) are compared with those of other nanosized adsorbents. This comparison shows the potentiality of mesoporous titania powders for the adsorption of CO(2).  相似文献   

4.
Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (>420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.  相似文献   

5.
Soumit S. Mandal 《Talanta》2010,82(3):876-884
Sensing and photocatalysis of textile industry effluents such as dyes using mesoporous anatase titania nanowires are discussed here. Spectroscopic investigations show that the titania nanowires preferentially sense cationic (e.g. Methylene Blue, Rhodamine B) over anionic (e.g. Orange G, Remazol Brilliant Blue R) dyes. The adsorbed dye concentration on titania nanowires increased with increase in nanowire dimensions and dye solution pH. Electrochemical sensing directly corroborated spectroscopic findings. Electrochemical detection sensitivity for Methylene Blue increased by more than two times in magnitude with tripling of nanowire average length. Photodegradation of Methylene Blue using titania nanowires is also more efficient than the commercial P25-TiO2 nanopowders. Keeping illumination protocol and observation times constant, the Methylene Blue concentration in solution decreased by only 50% in case of P25-TiO2 nanoparticles compared to a 100% decrease for titania nanowires. Photodegradation was also found to be function of exposure times and dye solution pH. Excellent sensing ability and photocatalytic activity of the titania nanowires is attributed to increased effective reaction area of the controlled nanostructured morphology.  相似文献   

6.
Rutile (Ald), anatase (TH), and the mixed anatase/rutile powder (P25) were surface modified by chemisorption of H2[PtCl6] from aqueous solution. The resulting materials photocatalyzed the degradation and mineralization of 4-chlorophenol with visible light. Ald adsorbed only traces and was inactive, P25 adsorbed 1.1 wt.% and exhibited medium activity, whereas TH adsorbed 4.0% and was six times more active than P25. In neutral water 4.0%Pt(IV)/TH is stable towards thermal and photochemical desorption of platinate, even in the presence of strongly adsorbing fluoride ions. Contrary to this, complete photodesorption occurred in 0.1 M hydrogen chloride solution. It is postulated that adsorption affords a surface tetrachloroplatinate(IV) complex covalently linked to the titania surface through a [Ti]O---Pt bond. The flatband potential of 4.0%Pt(IV)/TH at pH 7 is determined as −0.28±0.02 V (vs. NHE), which is more anodic by 260 mV as compared with unmodified TH. Solar experiments revealed that 4.0%Pt(IV)/TH is a much better photocatalyst than 1.1%Pt(IV)/P25, P25, and TH. It catalyzed the photodegradation also in diffuse indoor daylight, conditions under which all other tested materials were inactive. Upon UV excitation 4.0%Pt(IV)/TH is even more active than P25.  相似文献   

7.
Removal of methyl violet from aqueous solution by perlite   总被引:2,自引:0,他引:2  
The use of perlite for the removal of methyl violet from aqueous solutions at different concentration, pH, and temperature has been investigated. Adsorption equilibrium is reached within 1 h. The capacity of perlite samples for the adsorption of methyl violet was found to increase with increasing pH and temperature and decrease with expansion and increasing acid-activation. The adsorption isotherms are described by means of the Langmuir and Freundlich isotherms. The adsorption isotherm was measured experimentally at different conditions and the experimental data were correlated reasonably well by the adsorption isotherm of Langmuir. The order of heat of adsorption corresponds to a physical reaction. It is concluded that the methyl violet is physically adsorbed onto the perlite. The removal efficiency (P) and dimensionless separation factor (R) have shown that perlite can be used for removal of methyl violet from aqueous solutions, but unexpanded perlite is more effective.  相似文献   

8.
Adsorption equilibrium of fructose, glucose and sucrose was evaluated on sulfonated poly(styrene-co-divinylbenzene) cation-exchange resins. Two types of resins were used: potassium (K+) gel-type and sodium (Na+) macroporous resins. Influence of the cation and effect of the resin structure on adsorption were studied. The adsorption isotherms were determined by the static method in batch mode for mono-component and multi-component sugar mixtures, at 25 and 40 °C, in a range of concentrations between 5 and 250 g L−1. All adsorption isotherms were fitted by a linear model in this range of concentrations. Sugars were adsorbed in both resins by the following order: fructose > glucose > sucrose. Sucrose was more adsorbed in the Na+ macroporous resin, glucose was identically adsorbed, and fructose was more adsorbed in the K+ gel-type resin. Data obtained from the adsorption of multi-component mixtures as compared to the mono-component ones showed a competitive effect on the adsorption at 25 °C, and a synergetic effect at 40 °C. The temperature increase conducted to a decrease on the adsorption capacity for mono-component sugar mixtures, and to an increase for the multi-component mixtures. Based on the selectivity results, K+ gel-type resin seems to be the best choice for the separation of fructose, glucose and sucrose, at 25 °C.  相似文献   

9.
The thermodynamics of adsorption of amphiphilic surface-active compounds at the interface between two immiscible liquids is considered. At the interface, these molecules are supposed to replace a few of the adsorbed molecules of both solvents. Classical isotherms of adsorption (Frumkin, Frumkin-Damaskin, Langmuir, Henry) were based on the model of non-penetrable interface, where an adsorbate can substitute only molecules of one solvent. At the interface between two immiscible electrolytes, nonpolar oil/water interfaces, and liquid membranes amphiphilic molecules can substitute molecules of both solvent and classic isotherms cannot be used. The generalization of Frumkin isotherm for permeable and non-permeable interfaces, known as the Markin-Volkov isotherm, gives the possibility to analyze adsorption in a general case. The adsorption isotherms of pentafluorobenzoic acid at the octane/water interface at different pHs were measured by the drop-weight method. The thermodynamic parameters of pentafluorobenzoic acid (PFBA) adsorption at octane/water interface were determined. From the measurements of PFBA adsorption, the structure of the octane/water interface was determined. Substitution of one adsorbed octane molecule requires approximately three adsorbed PFBA molecules. This result shows that the orientation of solvent molecules at the interface is different from the bulk. Adsorbed octane molecules have a lateral orientation with respect to the interface. Gibbs free energy of adsorption equilibrium and thermodynamic parameters of PFBA adsorption show that the adsorption of PFBA at the octane/water interface is accompanied by a reduction in the attraction between adsorbed PFBA molecules as the pH decreases to the acidic region. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1194–1200. The text was submitted by the authors in English.  相似文献   

10.
In this study, single-crystal-like anatase TiO(2) nanowires were formed in a network structure by surfactant-assisted self-assembling processes at low temperature. The crystal lattice planes of the nanowires and networks of such wires composed of many nanoparticles were almost perfectly aligned with each other due to the "oriented attachment" mechanism, resulting in the high rate of electron transfer through the TiO(2) nanonetwork with single-crystal-like anatase nanowires. The direction of crystal growth of oriented attachment was controlled by changing the mole ratio of acetylacetone to Ti, that is, regulating both the adsorption of surfactant molecules via control of the reaction rate and the surface energy. A single-crystalline anatase exposing mainly the [101] plane has been prepared, which adsorbed ruthenium dye over 4 times higher as compared to P-25. A high light-to-electricity conversion yield of 9.3% was achieved by applying the titania nanomaterials with network structure as the titania thin film of dye-sensitized solar cells.  相似文献   

11.
A thermodynamic model of gas/solid adsorption has been constructed from two elements. One of those is the original Gibbs equation. The second is functions psi(theta) or psi(P) calculable from measured isotherms. The model provides the possibility of calculating the relative change in free energy of the surface, and based on the model, implicit isotherm equations of general validity and in integral form can be derived. The prediction of isotherms can be made based on characteristic adsorption functions (CAFs). The CAFs concentrate in one function all measured isotherms having the same change in relative free energy of the surface. From CAFs any isotherm can be predicted if one measured point is known or one required datum of the isotherm can be defined. The maximum average deviation between the measured adsorbed amounts and those calculated from the CAFs is +/-10%. The CAFs are very sensitive to the internal structure of adsorbents (micro-, meso-, and macropores and nanostructures). It is the goal of future investigations to determine the exact connections related to the CAFs and to the structure of adsorbents.  相似文献   

12.
Electrostatic effects on protein adsorption were investigated using differential scanning calorimetry (DSC) and adsorption isotherms. The thermal denaturation of lysozyme, ribonuclease A (RNase), and alpha-lactalbumin in solution and adsorbed onto silica nanoparticles was examined at three concentrations of cations: 10 and 100 mM of sodium and 100 mM of sodium to which 10 mM of calcium was added. The parameters investigated were the denaturation enthalpy (DeltaH), the temperature at which the denaturation transition was half-completed (T(m)), and the temperature range of the denaturation transition. For lysozyme and RNase, adsorption isotherms depend strongly on the ionic strength. At low ionic strength both proteins have a high affinity for the silica particles and adsorption is accompanied by a 15-25% reduction in DeltaH and a 3-6 degrees C decrease in T(m), indicating that the adsorbed state of the proteins is destabilized. Also, an increase in the width of the denaturation transition is observed, signifying a larger conformational heterogeneity of the surface bound proteins. At higher ionic strengths, both with and without the addition of calcium, no significant adsorption-induced alteration in DeltaH was observed for all three proteins. The addition of calcium, however, decreases the width of the denaturation transition for lysozyme and RNase in the adsorbed state. Copyright 2001 Academic Press.  相似文献   

13.
New data relating to the kinetics and adsorption isotherms of asphaltene in consolidated sandstone core samples are reported. The data were obtained from the measurements of electrokinetics of consolidated sandstone core samples in asphaltene/toluene solutions and petroleum oils. The numerical reduction in the (negative) zeta potential of the sandstone samples were attributed to the adsorption of positively charged molecules of asphaltenes. The hydrodynamics thickness δ of adsorption of asphaltene were followed by monitoring the pressure increase that occurred as the adsorbed layer restricted the rock pores and applying Poiseuille's equation. The flow rates indicated a plateau of asphaltene adsorption at a pore blocking thickness of about δ/r = 0.3, which was also the point at which the streaming current reached a plateau. After increasing to about 30% of the pore radius, the adsorbed layer thickness δ stopped growing either with time or with concentration of asphaltene in the flowing liquid. Alternative hypotheses involving asphaltene adsorption isotherms have been investigated. A theoretical treatment advanced describing particle adsorption in the same terms as molecular adsorption and the Langmuir isotherm, with the free energy of asphaltene adsorption on the rock surface (modeled on silica) calculated on the basis of van der Waals attraction. Acceptable agreement was obtained with the electrokinetic measurements.  相似文献   

14.
The adsorption of two dextrin-based polymers, a regular wheat dextrin (TY) and a carboxymethyl-substituted (CM) dextrin, onto an anatase TiO(2) particle film has been studied using in situ attenuated total reflection (ATR) FTIR spectroscopy. Infrared spectra of the polymer solutions and the polymer adsorbed at the anatase surface were acquired for two solution conditions: pH 3 and pH 9; below and above the isoelectric point (IEP) of anatase, respectively. Comparison of the polymer solution spectra and the adsorbed layer spectra highlighted a number of spectral differences that were attributed to involvement of the carboxyl group of CM Dextrin interacting with the anatase surface directly and the adsorption of oxidized dextrin chains in the case of regular dextrin (TY) at high pH. The adsorption/desorption kinetics were determined by monitoring spectral peaks of the pyranose ring of both polymers. Adsorption equilibrium was not established for Dextrin TY for many hours, whereas CM Dextrin reached equilibrium in its adsorption within 60 min. The extent of desorption of Dextrin TY (observed by flowing a background electrolyte dextrin-free solution) was extensive at both pH values, which reflects the poor affinity and binding of the polymer on anatase. In contrast, CM Dextrin underwent almost no desorption, indicating a high affinity between the carboxyl groups of the polymer and the anatase surface.  相似文献   

15.
The adsorption of CO on polycrystalline TiO2 was investigated by static adsorption microcalorimetry. The initial differential heat of adsorption (qdiff,0) of CO on polycrystalline titania is 40 kJ/mol, and the standard adsorption entropy (Deltas0) is -104 J mol(-1) K(-1). These results are consistent with those derived from temperature-programmed desorption and FTIR results in the literature. The good reproducibility of the isotherms and the stable qdiff indicate that the lattice oxygen and hydroxyl groups on titania surface are basically not reactive to adsorbed CO.  相似文献   

16.
离子液体-水的混和溶剂中,纳米TiO2的制备与表征   总被引:1,自引:2,他引:1  
闫智英  刘强  郑文君 《无机化学学报》2006,22(11):2055-2060
以钛酸正丁酯为前驱物,采用溶胶-凝胶低温水热方法,以离子液体(1-乙基-3-甲基咪唑醋酸盐)和水为混合溶剂,制备了锐钛矿相的纳米二氧化钛。产物经XRD,TEM,N2吸附-脱附等表征,结果表明与纯水相比,混和溶剂中制备的二氧化钛具有较高的纯度,结晶度和热稳定性,且缩短反应时间到24 h,所得颗粒尺寸10 nm与在纯水中反应48 h所得颗粒尺寸7 nm相当,说明离子液体的存在可促进锐钛矿相二氧化钛的结晶和生长。另外,该产物表面积可达238 m2·g-1。本文还进一步研究了该产物对甲基橙水溶液的光降解作用,结果表明,用此方法制备的TiO2对甲基橙降解作用优于商业P25二氧化钛。  相似文献   

17.
Pure titania, zirconia, and mixed oxides (3–37 mol.% of ZrO2) are prepared using the sol-gel method and calcined at different temperatures. The calcined samples are characterized by Raman spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption porosimetry. Measurements reveal a thermal stability of the titania anatase phase that slightly increases in the presence of 3–13 mol.% of zirconia. Practically, the titania anatase-rutile phase transformation is hindered during the temperature increase above 700°C. The mixed oxide with 37 mol.% of ZrO2 treated at 550°C shows a new single amorphous phase with a surface area of the nanoparticles double with respect to the other crystalline samples and the formed srilankite structure (at 700°C). The anatase phase is not observed in the sample containing 37 mol.% of ZrO2. The treatment at 700°C causes the formation of the srilankite (Ti0.63Zr0.37Ox) phase.  相似文献   

18.
Physicochemical parameters for adsorption of gases at the submonolayer regions of heterogeneous solid surfaces are measured experimentally as a function of time, and then interrelated as local isotherms θ against adsorption energy varepsilon, fractional changes of adsorption sites f(varepsilon)/c*(max) against varepsilon, θ against f(varepsilon)/c*(max), and distribution functions θ f(varepsilon)/c*(max) over adsorption energy values varepsilon, without using at all the well-known integral equation Theta(p, T)=integral(infinity)(0)θ(p, T, varepsilon)f(varepsilon)dvarepsilon and assumptions concerning the pair f(varepsilon) and θ(p, T, varepsilon). The method uses only chromatographic experimental data obtained by the inverse gas chromatography technique known as reversed-flow gas chromatography. It has been applied to the adsorption of cis-2-butene and trans-2-butene onto particles of Penteli marble at temperatures of 302, 314, 323, and 333 K. The results obtained are comparable with those calculated on the basis of the well-known integral equation. Copyright 2001 Academic Press.  相似文献   

19.
The adsorption isotherms of isopropanol on a Ni catalyst (15 wt % on SiO2) in the temperature range of 273–303 K are determined. An increase in the isosteric heat of adsorption and entropy of adsorption after treating the catalyst with high frequency plasma in hydrogen and adding 1.5 wt % of Ce is detected, with treatment involving glow discharge plasma in Ar and O2 having virtually no impact on these values. At a low degree of surface filling, the adsorption isotherms are described by the equation of induced adsorption. It is concluded that adsorbed isopropanol molecules are present in two forms: positively and negatively charged.  相似文献   

20.
Sol-gel titania was phosphated in two different ways: i) “in situ” phosphation using phosphoric acid as hydrolysis catalyst in the titanium butoxide gelling system, and ii) gelling with nitric acid and impregnation with ammonium phosphate solution. In calcined samples at 600°C a positive effect on the specific surface area for the “in situ” phosphated sample was found. X-ray diffraction patterns showed that the presence of phosphates ions stabilized the anatase phase. FTIR-pyridine adsorption identified only Lewis acid sites in phosphated samples. In the isopropanol decomposition for “in situ” phosphated titania, the activity was six times higher than that obtained for titania phosphated by impregnation, showing strong acidity for the in situ phosphated TiO2 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号