首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
强制沉积法是一种利用自组装原理快速沉积胶体晶体有序阵列的模板方法. 我们利用微机械刻划法加工金属Al薄膜, Al膜厚控制微粒粒径和聚醚砜膜厚控制层数, 成功地制备了用于强制沉积光子晶体的微池装置. 为了检验该微池装置的有效性, 我们分别测试了不同粒径(224, 245和283 nm)单分散聚苯乙烯微球的沉积效果, 并且对其中一种微球(283 nm)进行了不同温度的烘干处理, 检验了烘干温度对该样品表面形貌和光子带隙中心波长的影响. 实验结果表明, 该光子晶体呈面心立方结构, 内部晶格完整, 缺陷较少, 带隙中心波长的实验值与计算值符合得较好. 此外, 烘干处理可以使构成光子晶体的微球发生微观变化, 并导致光子带隙中心波长的蓝移.  相似文献   

2.
用旋涂法将聚苯乙烯微球组装成光子晶体,研究了此光子晶体的特点,并分析了在单一微球粒径下旋涂参数对光子带隙的影响.结果表明:旋涂法制备的光子晶体具有各向同性特点,其光子带隙由旋涂参数决定.光子晶体的反射波段取决于乳液中微球的质量分数,而反射强度取决于旋涂层数.因此,在设计光子晶体时,可以根据需要,通过微球的质量分数和旋涂...  相似文献   

3.
P(St-AM)核壳聚合物微球的制备及其光子晶体膜   总被引:1,自引:0,他引:1  
采用一步乳液聚合法,调节引发剂用量,制备了不同粒径的具有核壳结构的功能性聚(苯乙烯-丙烯酰胺)乳胶微球.用透射电子显微镜表征了乳胶微球的核壳结构和粒径,所制微球的粒径分别为195,217,234和255 nm.用红外光谱对微球的化学成分进行了表征,证实聚丙烯酰胺已包覆在聚苯乙烯外层.通过竖直沉积自组装法制备了聚合物微球的光子晶体薄膜.扫描电子显微镜表征了所制光子晶体膜的表面形貌,反射和透射光谱表征了光子禁带.结果表明,聚合物微球以面心立方紧密堆积,其(111)面与基底平行;微球粒径不同,光子晶体的光子禁带不同.制备了不同光子禁带的光子晶体,禁带分别位于473,515,574和630 nm,相应的薄膜分别呈蓝色、绿色、黄色和红色,对于光子晶体的拓展和应用具有重要的意义.  相似文献   

4.
通过制备过程中严格分离晶核的形成和生长两步骤, 成功获取了直径一致的单分散ZnO胶体球, 并通过控制晶核的数量来调节胶体球大小. 利用扫描电子显微镜和X射线衍射仪对其进行了结构和成分表征. 通过加热条件下的重力场自组装, 把ZnO单分散胶体球的浓缩液滴到140 ℃下的各种不同的基底上, 随着溶剂蒸发, 胶体球自组装成光子晶体, 最后测量了光子晶体的光透过率, 胶体球直径为220、250 nm的光子晶体分别具有对应着中心波长为460、540 nm的光子带隙.  相似文献   

5.
用改进的种子法合成SiO2微球. 微球生长过程中连续缓慢添加正硅酸乙酯,使用动态光散射法实时监控微球粒径的增长过程,调节正硅酸乙酯的添加,实现对粒径的精确控制. 为制备禁带位置位于1000 nm 的光子晶体,合成粒径为446 nm的SiO2微球,微球粒径在4 h内从193 nm 增长到446 nm,远远快于传统种子法,微球粒径与目标粒径偏差为±5 nm. 制得的SiO2微球被组装为光子晶体,其禁带位置恰好位于1000 nm.  相似文献   

6.
用提拉成膜法将单分散295 nm聚甲基丙烯酸甲酯(PMMA)胶体微球自组装成蛋白石光子晶体膜. 在PMMA蛋白石光子晶体膜的空隙里填充15 nm二氧化钛纳米颗粒, 经500 ℃的处理除去PMMA膜板, 制备出大面积, 结构均一的二氧化钛反蛋白石光子晶体膜. 扫描电子显微镜(SEM)观察和X射线光电能谱(XPS)分析表明, 这种二氧化钛反蛋白石光子晶体薄膜是六方紧密堆积. 用这种二氧化钛反蛋白石光子晶体膜对溶液折射率的检测实验表明该传感膜分辨率可达0.01.  相似文献   

7.
制备了由单分散聚苯乙烯微球构成的结晶化胶体阵列结构, 并制备了结晶化胶体阵列聚丙烯酰胺水凝胶薄膜. 通过微区反射光谱研究了其光子带隙位置随外加压力的变化规律. 实验结果表明, 该薄膜在垂直表面方向存在光子带隙, 并在一定载荷范围内带隙波长随外加压力呈可逆线性变化.  相似文献   

8.
提出了一种在光纤端面制备单层胶体晶体薄膜的新方法——微流注射法,利用针尖微量注射胶体微球溶液,该方法可以在气/液界面直接形成大面积六角密排的周期纳米球阵列,面积达到平方厘米级别,再利用二维胶体单层膜的可转移性,将薄膜转移至到光纤端面衬底上,形成单层胶体微球有序薄膜.采用扫描电子显微镜和光谱分析仪对样品形貌、结构以及光学特性进行了表征和分析.电子显微镜图像表明,光纤端面的胶体晶体为六角密排阵列结构.透射光谱表明,该结构具有光子晶体的带隙特征,带隙的中心波长约为700和850 nm,与分析软件FDTD Solutions仿真结果相吻合.结合溅射沉积方法,得到了银纳米球壳阵列结构,检验了其局域表面等离子体共振效应(LSPR).对比讨论了溶液浓度、弯月面的形成及注射速度等因素对微流组装胶体微球薄膜质量的影响.  相似文献   

9.
利用无皂乳液聚合法合成了单分散聚苯乙烯(PS)微球,以通过湿法纺丝自制的石墨烯纤维为基材,利用电泳沉积法在纤维表面沉积PS微球形成光子晶体纤维,通过改变微球粒径来控制纤维的颜色,并利用扫描电子显微镜、光学显微镜、紫外反射光谱和色度分析对光子晶体纤维进行了表征.结果表明,制备得到的PS微球表面光滑,形状规整并以六方密堆积形式在石墨烯纤维表面紧密有序排列,呈现壳芯结构.粒径为198、233和287 nm的PS微球分别得到了蓝、绿、紫红3种颜色的结构色纤维,所得光子晶体纤维的光子禁带分别位于471、547 nm,以及670和398 nm,与其颜色相吻合.采用CIE xy Y色彩空间辨别所得光子晶体纤维颜色,蓝、绿、紫红3种颜色的明度因数分别为:15.96、29.72、3.85,其对应于纯蓝色、纯绿色、纯紫色明度值的44%、63%和32%,说明其具有较高的明度.计算得到蓝色、绿色、紫红色纤维饱和度分别为63%、59%、60%,由此可知3种不同颜色的纤维均具有较高饱和度.  相似文献   

10.
改性聚苯乙烯微球的制备及其胶体晶体的组装   总被引:10,自引:0,他引:10  
采用甲基丙烯酸改性的无皂乳液聚合方法制备了尺寸为210 nm、含羧基的聚苯乙烯(PS)微球,用红外光谱、透射电子显微镜和粒度分析仪对其形状和结构进行分析,结果表明,经甲基丙烯酸改性后得到了表面为高密度电荷的单分散性PS微球.用垂直沉积法快速制备出在较大范围(大于1 cm2)呈现很好有序性的密排结构聚苯乙烯胶体晶体薄膜,其在590 nm波长处存在光子带隙.在电子显微镜下,观察到这种胶体晶体是面心立方(fcc)密排结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号