首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
碳资源基础产品如烃、醇、CO、CO_2、胺等的清洁、高效转化是实现化学工业可持续发展的基础.含氮精细化学品广泛应用于化学化工领域,其清洁合成一直是催化化学关注的热点问题之一.通过碳资源的高效、清洁转化合成含氮精细化学品对于高效利用碳资源、实现化学化工可持续发展具有重要的意义.而经由羰基中间体构建(烃、醇转化为醛、酮、酸、酯等)和活化转化(C1含羰分子、醛、酮、酸、酯等)合成含氮精细化学品是其中的一条有效的途径,其关键则在于含羰分子构建与转化高性能催化体系的创制.自2008年以来,本课题组一直致力于基于含羰分子构建与转化的含氮精细化学品清洁合成催化体系的构建,并取得了一定进展.本文主要介绍本课题组在基于C1含羰分子催化胺化、基于羰基中间体构建的醇催化胺化以及基于羰基官能团构建与循环的均、多相融合催化体系的建立等方面的研究工作.  相似文献   

2.
固定二氧化碳(CO_2)的工业过程远远落后于人类活动产生的碳排放量.由于二氧化碳是一种丰富、无毒且廉价易得的碳资源,因此开发出将二氧化碳转化为有价值的产品,以实现可持续发展的化学合成是非常有意义的.基于过渡金属催化和有机催化活化CO_2的机理研究,近年来已开发出多种有效的CO_2的不对称化学固定方法.讨论了通过CO_2的不对称化学固定实现的小分子化合物的手性合成的进展.通过阐述催化剂、CO_2和底物之间的相互作用,旨在激发CO_2不对称转化的新型催化系统的设计.  相似文献   

3.
CO_2既是温室气体的重要组分,又是可再生的C1资源,随着温室效应导致的全球变暖等环境问题的加剧,CO_2化学引起科学家越来越多的关注.微孔有机聚合物材料(MOPs)所具有的独特优点,尤其是单体及材料合成方法的多样性,易于在其骨架中引入特定的亲CO_2官能团、有机配体、金属催化中心等,为CO_2吸附、活化及资源化利用提供了新的契机.本文将概述近年来功能型MOPs材料在CO_2吸附及催化转化领域的研究进展.涉及的MOPs主要为通过化学方法直接合成的、亲CO_2基团(如偶氮键、Tr?ger碱、咔唑、三嗪基团、希夫碱、苯并咪唑和氟原子等)功能化的有机聚合物材料,它们在CO_2高效吸附、活化的基础上实现了CO_2的催化转化,合成高附加值化学产品,如甲酸、甲基胺、有机碳酸酯等.  相似文献   

4.
太阳能光催化是CO_2转化和利用的新兴技术,直接利用洁净充足的太阳能将自然界富有的"温室气体"CO_2转化成化学燃料,不仅有利于消除大气温室效应,而且能缓解能源短缺问题,因而成为人们研究的一个重要方向.但目前CO_2的吸附和转换效率还很低,这是太阳能光催化CO_2资源化的最大障碍.高性能光催化剂的设计和合成是这项技术的关键.针对CO_2光还原反应的特异性,理想的光催化材料应该具有以下功能:强的CO_2吸附能力和高的光催化活性.将光催化剂与对CO_2具有高吸附性的多孔材料结合,就可以将CO_2吸附并富集在吸附剂周围的光催化剂表面上以进行催化转化,因此基于高效多孔吸附材料构筑光催化体系成为光催化转化CO_2的重要研究方向之一.CO_2的循环利用包括吸附和转化两方面,高吸附量的多孔材料是获得CO_2高转化效率的前提.本文首先以多孔材料结构参数及性能指标为主线,对无机多孔材料、金属有机框架材料及微孔有机聚合物材料的研究进展及应用前景进行了评述.通过对多孔材料的改性和新型多孔材料的开发,CO_2的吸附能力得到一定的提升,但是仅仅依靠多孔材料的吸附分离,不能实现CO_2中的碳资源循环.在此基础上,本文重点评述了多孔光催化材料在CO_2光催化转化中的最新研究进展.采用多孔材料与光催化剂结合,可增加材料的比表面积,在界面处暴露更多的活性位点,有利于光催化CO_2转化的进行;同时,通过孔结构和基团调控,可以调控光催化剂的反应活性和产物选择性.特别是金属有机框架材料与微孔有机聚合物材料,改变构建单元的官能团和制备技术还可以实现光谱响应范围的调控,提高太阳光的利用率.大量文献对比发现,引入较高CO_2吸附效率的多孔材料构建光催化体系,CO_2光催化转化的效率及产物选择性显著提高.最后,本文对多孔材料在CO_2光催化转化领域的研究现状与亟待解决的问题进行了剖析,提出了下一步可能的研究方向:(1)提高多孔材料自身的稳定性如耐水性能与光/热稳定性;(2)发展光催化材料在多孔载体的微观组装方法,不影响CO_2吸附效率的前提下提高光催化活性;(3)深入研究多孔光催化材料内部与表面的CO_2转化机理,为进一步提高吸附与转化效率提供理论指导.  相似文献   

5.
二氧化碳是一种储量丰富且廉价易得的可再生性碳一资源。化学工作者建立起来的一系列过渡金属催化的CO_2作为羧化试剂的新反应方法学,成功地将CO_2高效转化成在精细有机合成中有着重要用途的羧酸及其衍生物等高附加值的化学品.CO_2通常作为亲电试剂或环加成底物与各种亲核试剂或含不饱和键的化合物进行反应.最近,过渡金属催化的两种不同亲电试剂的还原交叉偶联反应作为一种构建碳-碳键的直接而有效的新方法受到了研究者的极大关注.此种方法不同于传统的交叉偶联反应,不再使用难以制备且对水和氧敏感的金属有机化合物,原料易得且操作非常简便.其中亲电试剂与CO_2的直接还原羧化反应便是一种合成功能羧酸的更绿色的新方法.Martin课题组之前报道了首例钯催化的芳基溴代物与CO_2的还原羧化反应.Tsuji课题组也发现了反应条件更温和的镍催化的芳基或烯基氯代物与CO_2的直接羧化反应.随后Martin课题组发展了苄基氯代物、芳基或苄基酯、烯丙基酯等一系列亲电试剂直接还原羧化反应.而对于含有β氢的非活化烷基亲电试剂,由于其不易进行氧化加成反应,同时原位形成的烷基金属试剂容易进行β氢消除及二聚等副反应,使得这类底物参与的直接还原羧化反应极具挑战性.最近,Martin课题组在含有β氢的非活化烷基亲电试剂与CO_2的还原羧化反应研究方面取得了突破.使用锰粉作为还原剂,氯化镍乙二醇二甲醚配合物与2,9-二乙基-1,10-邻菲罗啉配体组成的催化体系能有效抑制β氢消除及二聚等副反应,在室温及常压条件下便可高效地将一系列含有β氢的非活化烷基溴代物转化成相应的羧酸.此催化体系的底物适用性很宽,酯基、氰基、缩醛、醛、酮甚至醇羟基和酚羟基等活泼基团都能被容忍.他们应用此反应成功实现了具有生物活性的羧酸小分子化合物的一步合成.虽然确切的反应机理目前还不够清楚,但初步的实验表明催化循环中可能包含一价镍物种参与的单电子转移过程.基于此反应体系,他们随后也实现了包含炔基官能团的非活化烷基溴代物与CO_2的还原环化/羧化串联反应,环状α,β-不饱和羧酸产品的顺反构型可以很容易地通过底物及配体的选择进行控制.总之,Martin课题组发展的镍催化体系在温和条件下实现了含有β氢的非活化烷基亲电试剂与CO_2的还原羧化反应.此反应底物适用性宽,原料易得,操作简便,为合成功能团羧酸提供了一种行之有效的方法.此反应的成功也极大扩展了还原交叉偶联反应的底物适用范围.随着机理研究的深入,更多新型高效的非活化烷基亲电试剂与CO_2的还原羧化反应将会出现.  相似文献   

6.
电化学二氧化碳还原是利用电能驱动将CO_2高效转化为小分子碳基燃料的新方法,被认为是目前最具应用潜力的碳资源转化技术之一。然而,CO_2还原反应仍面临着诸多挑战,如反应过电位高,产物选择性低以及析氢反应的竞争等。因此,开发高效的电催化剂是发展CO_2还原技术的核心关键。近年来,Pd基材料在CO_2还原反应中表现出独特的催化性能优势:它不仅可以在接近平衡电位下高选择性地还原CO_2生成甲酸/甲酸盐,还能够在一定的负电位区间高效地还原CO_2生成CO。尽管如此,Pd基材料目前仍存在着成本较高、活性不理想以及稳定性差等问题,严重制约了其进一步应用与发展。对此,本文首先简单介绍了CO_2RR的基本原理,并综述了近年来Pd基催化剂电还原CO_2的应用研究及发展现状。重点探讨了尺寸效应、形貌效应、合金效应、核壳效应及载体效应等对Pd基催化剂性能的影响。最后针对这类材料的问题挑战及其未来发展方向进行了探讨与展望。  相似文献   

7.
正J.Am.Chem.Soc.2017,139,17011~17014二氧化碳(CO_2)是大家熟知的温室气体分子,同时也是廉价易得、无毒、可再生的理想C1合成子.长期以来,科学家们在将CO_2转化为燃料和高附加值的化学品领域做了大量工作.然而,CO_2参与的不对称催化转化,尤其通过不对称碳-碳键形成反应制备具有光学活性化合物,一直是该领域中的重要挑战.四川大学化学学院余达刚课题组首  相似文献   

8.
刘聪  胡兴邦 《分子催化》2022,36(2):162-170
CO_(2)加氢制甲酸由于需同时活化惰性氢气及CO_(2)而富有挑战性,同时此过程原子经济性100%,具有很好的理论和现实研究价值,但文献中报道的活性较好的催化剂均为贵金属催化剂.为了开发活性更高的用于CO_(2)加氢制甲酸的铁基催化剂,我们采用理论计算方法研究了12种不同种类的PNP-Fe(PNP=2,6-(二-叔丁基-磷甲基)吡啶)化合物催化CO_(2)加氢制甲酸的过程.理论研究结果表明,CO_(2)加氢制甲酸反应过程包括H2活化及CO_(2)插入金属氢键两个步骤,H_(2)活化过程是整个反应的速控步骤.催化剂吡啶环上进行P原子取代可以显著降低H_(2)活化能垒.基于以上发现,我们设计了一种新颖的高效铁基催化剂,使用此催化剂催化CO_(2)加氢制甲酸反应,速控步骤能垒只有85.6 kJ/mol,催化活性与贵金属的比较接近.我们研究的12种铁基催化剂速控步骤能垒范围为85.6~126.4 kJ/mol,显示了配体良好的调控催化活性能力.  相似文献   

9.
正二氧化碳高效转化为化学燃料,是实现节能减排的有效途径之一。探索发展二氧化碳高效转化新技术已成为国际上能源环境催化等领域的重要发展方向。二氧化碳是碳最稳定的氧化态,碳氧双键在热力学上十分稳定,需要提供很高的能量才能将其活化进而还原[1,2]。因此,如何制备出高效、廉价、稳定的二氧化碳电还原催化剂,一直是实现这一目标的关键问题之一。近几年来,斯坦福大学Kanan课题组的一系  相似文献   

10.
Zhimin LIU 《物理化学学报》2019,35(12):1307-1308
<正>二氧化碳(CO_2)是主要的温室气体,同时也是廉价、无毒、丰富、可再生的C_1资源~1。将CO_2转化为高附加值化学品具有碳资源合理利用和环境保护双重意义,近年来引起国内外的广泛关注。然而,由于CO_2热力学稳定、动力学惰性,其转化利用存在热力学和动力学的双重难题。采用电化学方法将CO_2转化为液体燃料和高附加值化学品,是  相似文献   

11.
二氧化碳(CO_2)是典型的温室气体,又是重要的可再生碳资源,实现CO_2的资源化利用是国际前沿和研究热点.结合本课题组的工作,本文总结和评述了离子液体特殊微观结构及离子微环境构筑、离子液体与CO_2间的相互作用机制、离子液体强化CO_2催化合成碳酸酯、CO_2电化学还原、CO_2生物催化还原方面的研究进展,并展望了未来发展方向.  相似文献   

12.
近些年来,将CO_2转化为高附加值化学品受到广泛关注。其中,CO_2、炔丙醇和亲核试剂的三组分反应可用于制备用途广泛的羰基化合物,该方法具有步骤经济性、原子经济性等优点。由于CO_2分子具有热力学稳定性和动力学惰性,多数CO_2参与的化学反应在热力学上不支持。然而,CO_2、炔丙醇和双亲核试剂三组分反应是热力学有利的CO_2转化反应,实现了邻二醇或氨基醇和CO_2到环状碳酸酯以及2-噁唑啉酮的高效转化。本综述旨在于总结并讨论近年来CO_2、炔丙醇和亲核试剂三组分反应制备多种羰基化学物的主要进展。  相似文献   

13.
二氧化碳既是温室气体的主要成分又是储量丰富且可再生的碳资源,研究二氧化碳的化学转化和利用有着重要意义。基于二氧化碳与催化剂的弱相互作用以及催化活化原理,通过采用环境友好的反应介质(如高密度二氧化碳、聚乙二醇等)及催化剂的设计、分离和循环利用等策略,设计并合成了单组分和双组分的功能化高效催化剂用于合成有机碳酸酯、脲、噁唑啉酮和喹唑啉二酮类化合物,并相应建立了具有重要工业应用价值的合成新方法以及环境友好的新工艺。以二氧化碳为合成子的精细化工中间体合成不但丰富了有机化学的合成方法学,也为解决日渐严重的环境问题提供潜在的新方法。在此,对本课题组近二年来在二氧化碳化学尤其是二氧化碳催化转化方法方面的研究成果做一小结。  相似文献   

14.
《有机化学》2014,(8):1699
正CO2是主要的温室气体,同时也是一种廉价、丰富的C1资源,因此将CO2转化为高附加值化学品研究具有重要的理论和现实意义.然而由于CO2高度的热力学稳定性和化学惰性,如何实现在温和条件下(尤其是常温常压下)的化学转化是一个极具挑战性的科学问题.最近中国科学院化学研究所刘志敏课题组通过设计合成一种双功能离子液体([HDBU+][TFE-]),发展了面向常温、常压下CO2与邻氨基苯腈类化合物反应合成喹唑啉-2,4(1H,3H)-二酮类化合  相似文献   

15.
张涛 《催化学报》2018,39(6):1013-1016
在著名的1953年米勒实验中,甲烷、氨气、氢气和水在持续电火花的作用下被转换成一系列天然氨基酸混合物,包括甘氨酸、丙氨酸、天冬氨酸和α-氨基丁酸等等.这种化学转化过程奠定了现代人们对地球生命起源的认知基础.氨基酸作为蛋白质的基本组成成分,在生产生活中有广泛的应用,扮演着不可或缺的角色.目前,微生物发酵过程是氨基酸的主要生产途径,其生产受到许多限制.通过高效的催化方法将氨气和丰富的可再生碳资源直接转化成一系列氨基酸的化学路径尚未实现.近日,新加坡国立大学颜宁教授课题组与厦门大学王野教授课题组等数个国内外研究小组合作,开辟了一种用化学方法将木质生物质转化成一系列氨基酸的新路径.转化策略分两步:首先将纤维素、葡萄糖等转化为α-羟基酸,再将α-羟基酸在氨水和氢气作用下制备对应的氨基酸.第二步是核心步骤,可以被看作是一种改进版的米勒实验:即采用特定的木质生物质衍生物替代甲烷作为底物,而负载的钌催化剂则取代电火花实现定向高效转化.该系统已经成功用于6种氨基酸制备,包括丙氨酸、亮氨酸、缬氨酸、天冬氨酸和苯丙氨酸等.将α-羟基酸转化成氨基酸的反应遵循先脱氢再还原胺化途径,其中脱氢是速率控制步骤.在该反应中,碳纳米管上负载的钌催化剂比其他贵金属催化剂表现出显著优异的活性.这主要得益于氨分子对钌纳米颗粒的配位作用增强了钌脱氢反应的活性.基于新开发的催化体系,葡萄糖经由两步化学反应转化成43%丙氨酸,产率与微生物发酵过程相当.文章作者还使用膜蒸馏作为产物分离提纯技术,完成了概念性工艺设计,并用实验加以验证.考虑到氨基酸的高价值,这项报道不仅代表了近年来生物质催化转化的一项重要学术突破,在进一步开发和优化后还具有很好的应用潜力.  相似文献   

16.
大气中过高的CO_2浓度严重影响自然界的碳循环平衡,对全球气候和生态环境提出了严峻挑战.但同时CO_2作为一种潜在的碳资源,可通过催化转化生成高附加值的化学品. CO_2电化学还原反应(CO_2RR)可利用太阳能、风能等可再生能源产生的电能将CO_2直接转化生成高附加值化学品和燃料,有助于构建"碳中性"的能源循环利用网络,具有极具潜力的应用前景.然而,活化稳定的CO_2分子需克服一定的过电势,且由于反应在水相中进行, CO_2RR与析氢反应互相竞争,因此开发高效、廉价、稳定的催化剂一直是CO_2RR研究的难点.研究表明,含有金属-氮(M-Nx)活性位的催化材料如卟啉、酞菁等大环配合物、金属有机骨架材料以及通过热解法制备的金属-氮-碳(M-N-C)材料具有优异的CO_2RR性能.本文从实验和理论两方面综述了近年来该类材料领域的相关进展,重点介绍了金属位点种类、配体结构、载体选择对催化剂本征活性的影响,并讨论了反应条件优化对CO_2RR性能提升的作用.结合原位表征和理论计算结果探讨了含M-Nx材料反应条件下活性位的结构及反应路径,为合理设计和优化CO_2RR催化剂体系提供了新思路.  相似文献   

17.
目前为了有效地利用好CO_2,主要策略有以下几种:(1)"水平途径"——无价态及能量变化,譬如生成尿素、环状碳酸酯、聚碳酸酯及噁唑烷酮类衍生物等;(2)"垂直途径"——有价态及能量变化,譬如直接加氢转化成碳一产品(甲酸、甲醛、甲醇、甲烷)等;(3)"对角线途径"——有价态及能量变化,即结合石油化工原料将CO_2还原生成醇、醚、羧酸、亚胺、酰胺、酯等系列高附加值的精细有机化工产品.其中以二氧化碳和含氢硅烷为原料,通过有机胺的N-甲酰化反应合成甲酰胺类衍生物符合绿色化学和可持续发展的要求.基于仿生催化CO_2分子活化的基本理论,我们借鉴强极性的有机溶剂可有效活化硅氢键的性质,创新性地将廉价易得的酞菁锌(Zn Pc)作为类酶催化剂,并以化学计量的N,N’-二甲基甲酰胺(DMF)为添加剂,构成组分新颖并高效绿色的类酶协同催化体系,实现了在温和反应条件下高效高选择性地合成甲酰胺类衍生物.研究发现:以苯硅烷作为还原剂,当加入0.5mol%Zn Pc和2 mmol DMF,在25 ℃和0.5 MPa下仅需反应6 h,可得到收率为99%的N-甲基甲酰苯胺.更值得注意的是,当以更易得的聚甲基氢硅烷(PMHS)为还原剂时,加入5 mol%Zn Pc和1 mL DMF,在80 ℃和1 MPa下反应8 h,N-甲基甲酰苯胺的收率也高达99%.实验结果表明:添加剂DMF可以通过溶剂化和强极性作用高效活化含氢硅烷中的Si-H键,然后具有亲电性的金属活性中心能够稳定氢负离子生成高活性锌氢中间体.即Zn Pc/DMF之间的协同催化作用能够促进氢化物从含氢硅烷转移到CO_2分子,进而有利于CO_2分子的高效活化.综上所述,利用类酶催化剂反应专一性的特点,通过有机胺的N-甲酰化反应,实现了以CO_2和含氢硅烷为原料在温和条件下甲酰胺类衍生物的绿色高效合成.这对于设计和开发更加高效的催化体系具有一定的指导作用和借鉴意义.  相似文献   

18.
In This Issue     
正封面:从电力到产品的策略,旨在将CO_2还原成有价值的产品,但其过程中不产生额外的温室气体,如此形成碳循环.朱晓兵及石川等人报道了Ce O2负载纳米金催化剂在较低温度和常压下催化CO_2加氢,获得接近热力学平衡的CO_2转化率以及近100%的CO产物选择性.  相似文献   

19.
正二氧化碳是一种主要温室气体,也是来源丰富、环境友好的可再生碳一资源。其化学转化不仅可固定CO_2,还可获得高附加值能源产品、化学品以及可降解的高分子材料,因此其资源化利用引起了科技界的广泛关注和研究兴趣。  相似文献   

20.
开发高效的催化剂用于催化还原CO_2转化为甲酸和它的盐类已经成为研究的热点,是因为将CO_2转化为C1产物不仅可以解决CO_2的含量升高带来的环境问题,还可以解决化石能源燃烧日趋严重的问题。贵金属配合物催化CO_2转化为甲酸和甲酸盐类是目前这类反应最有效的方式,尤其是Ru、Ir和Rh等贵金属。我们之前的研究结果表明Ir(Ⅲ),Ru(Ⅱ)类配合物催化还原CO_2转化为甲酸盐的活性是由配合物Ru―H键的成键性质决定的。它们能高活性的催化CO_2是由于它们都含有同一种特点的Ru―H键,是由Ru的sd~2杂化轨道和H的1s轨道杂化而成的,而且这一特点可以被活性氢的对位配体显著影响。鉴于硼基配体具有强的对位效应,我们基于高活性的均相催化剂Ru(PNP)(CO)H_2 (PNP=2,6-二(二叔丁基磷甲基)-吡啶)设计了Ru-PNP-HBcat和Ru-PNP-HBpin,并计算了二者催化还原CO_2的活性。Bcat和Bpin配体是实验上常用的硼基配体。我们的计算结果表明Ru-PNP-HBcat和Ru-PNP-HBpin有比Ru-PNP-H_2更长的Ru―H键、亲核性更强的活性氢,其Ru―H键中的Ru原子的d轨道杂化成分的贡献也比Ru-PNP-H_2的更少。相应地Ru-PNP-HBcat和RuPNP-HBpin活化CO_2的能垒比Ru-PNP-H_2低。而且Ru-PNP-H_2、Ru-PNP-HBcat和Ru-PNP-HBpin催化CO_2转化为甲酸盐的能垒分别为76.2、67.8、54.4 kJ·mol~(-1),表明Ru-PNP-HBpin具有最高的催化活性。因此,钌配合物催化还原CO_2的活性可由硼基配体强的对位效应和Ru―H键的成键性质来调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号