首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Metastable orthorhombic phase of AgInS2 nanocrystals with various shapes, including particles, rods, and worms, have been obtained to demonstrate a facile and effective one-pot chemical route for the synthesis of high quality I-III-VI2 ternary semiconductor nanocrystals (AgInS2, CuInS2, AgInSe2) with controllable shape and size.  相似文献   

2.
以绿色环保的油酰吗啉作为硒粉的溶剂,油胺作为表面包覆剂,通过简单的液相法制备了银铟硒纳米颗粒。X射线衍射和透射电子显微镜分析测试显示AgInSe2纳米颗粒属于四方黄铜矿相结构,粒径约为16 nm的六角盘状纳米晶。紫外可见光谱分析表明所制备的AgInSe2纳米颗粒禁带宽度约为1.22 eV。考察了反应时间对AgInSe2纳米颗粒尺寸的影响,发现颗粒的尺寸随着反应时间的延长而逐渐变大。对AgInSe2纳米颗粒的生长机制进行了初步探讨,油胺的选择性吸附及材料的晶体结构被认为是决定纳米颗粒形貌的主要因素。  相似文献   

3.
生物分子辅助溶剂热合成硫化锑纳米棒   总被引:1,自引:1,他引:0  
以SbCl3和L-胱氨酸为反应原料,采用溶剂热法在170℃反应12h,制得硫化锑(Sb2S3)纳米棒.X射线衍射(XRD)、能量分散光谱(EDS)和X射线光电子能谱(XPS)研究表明所得产物为典型的Sb2S3正交结构.场发射扫描电子显微镜(FESEM)和透射电子显微镜(TEM)研究显示,Sb2S3纳米棒长为3~6μm,平均直径约为150nm.讨论了不同反应时间对Sb2S3的形成及其形貌的影响,并根据实验结果对所合成的一维纳米棒可能的形成机理进行了简单的探讨.  相似文献   

4.
Zhang H  Huang J  Zhou X  Zhong X 《Inorganic chemistry》2011,50(16):7729-7734
High-quality Bi(2)S(3) discrete single-crystal nanosheets with orthorhombic structure have been synthesized through the thermal decomposition of a single-source precursor, Bi(S(2)CNEt(2))(3), in amine media. The morphology evolution reveals that the Bi(2)S(3) nanosheets are developed through the assembly of nanorods, and an attachment-recrystallization growth mechanism is proposed for the formation of nanosheets with the use of nanorods as building blocks. High-resolution transmission electron microscopy studies reveal that the nanosheets have the largest exposed surface of (100) facets. The effects of experimental variables, such as the reaction temperature, time, precursor concentration, and media, on the morphology of the obtained nanocrystals have been systematically investigated in which the amine has served as the solvent, surfactant, and electron donor.  相似文献   

5.
Wang H  Lu YN  Zhu JJ  Chen HY 《Inorganic chemistry》2003,42(20):6404-6411
Regular stibnite (Sb(2)S(3)) nanorods with diameters of 20-40 nm and lengths of 220-350 nm have been successfully synthesized by a sonochemical method under ambient air from an ethanolic solution containing antimony trichloride and thioacetamide. The as-prepared Sb(2)S(3) nanorods are characterized by employing techniques including X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, transmission electron microscopy, selected area electron diffraction, high-resolution transmission electron microscopy, and optical diffuse reflection spectroscopy. Microstructural analysis reveals that the Sb(2)S(3) nanorods crystallize in an orthorhombic structure and predominantly grow along the (001) crystalline plane. High-intensity ultrasound irradiation plays an important role in the formation of these Sb(2)S(3) nanorods. The experimental results show that the sonochemical formation of stibnite nanorods can be divided into four steps in sequence: (1) ultrasound-induced decomposition of the precursor, which leads to the formation of amorphous Sb(2)S(3) nanospheres; (2) ultrasound-induced crystallization of these amorphous nanospheres and generation of nanocrystalline irregular short rods; (3) a crystal growth process, giving rise to the formation of regular needle-shaped nanowhiskers; (4) surface corrosion and fragmentation of the nanowhiskers by ultrasound irradiation, resulting in the formation of regular nanorods. The optical properties of the Sb(2)S(3) amorphous nanospheres, irregular short nanorods, needle-shaped nanowhiskers, and regular nanorods are investigated by diffuse reflection spectroscopic measurements, and the band gaps are measured to be 2.45, 1.99, 1.85, and 1.94 eV, respectively.  相似文献   

6.
Zhuang Z  Peng Q  Liu J  Wang X  Li Y 《Inorganic chemistry》2007,46(13):5179-5187
Indium hydroxides, oxyhydroxides, and oxides are important n-type semiconductors and have wide applications in material fields. In this Article, a series of In(OH)(3) and InOOH nanocrystals with different structures and morphologies, such as nanocubes, nanorods, multipods, and nanoparticles, have been synthesized selectively through a liquid-phase reaction, by adjusting the alkalinity and polarity of the solvent. It is found that InOOH multipods are in the orthorhombic phase and their arms grow along nonequivalent faces. Cubic and hexagonal In(2)O(3) can be obtained from In(OH)(3) and InOOH, respectively, while size and morphology can be maintained to a certain extent. Gas sensors were fabricated by using In(2)O(3), and a device based on the multipods shows the best responses to ethanol vapor. XRD, TEM, HRTEM, SEM, and SAED have been used to characterize these nanocrystals. This work provides a preliminary investigation into the structural-based gas-sensing properties of these nanocrystals.  相似文献   

7.
谢少艾 《电化学》1999,5(4):455-458
银铟硒是继铜铟硒之后新发展起来的另一种能源、信息功能材料,它的禁带宽度Eg=1.20eV,更接近于光电转换效率最高的太阳能电池所应具有的能隙值[1],因此具有广泛的应用前景.早在六十年代,前苏联就对银铟硒的物理性质及电子特性有过报道.目前有关光电化学电池(PEC)所利用的银铟硒薄膜材料的制备大多是采用大晶粒熔融生长法[2,3].80年代,RaviendraP.T.K.Sharama[4]曾报道应用电沉积法制作p_AgInSe2/CdS液结太阳能电池,但真正利用电化学沉积制备银铟硒的报道不多,由电…  相似文献   

8.
Well-segregated bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity have been successfully prepared from bismuth(III) monosalicylate [BiO(C7H5O3)] by a simple hydrothermal reaction in H2O at 180 °C. Bismuth(III) monosalicylate and thioglycolic acid act as the starting materials. The products were characterized by powder X-ray diffraction, Ultraviolet–Visible (UV–Vis) spectroscopy, transmission electron microscopy photoluminescence spectroscopy, and Fourier transform infrared spectra. The powder X-ray diffraction pattern shows the product belongs to the orthorhombic Bi2S3 phase. Their UV–Vis spectrum shows the absorbance at 328 nm, with its direct energy band gap of 2.6 eV. Bismuth salicylate, which is known to be a complex, may play a critical role as a precursor and a template for the growth of linear bismuth sulfide nanorods. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.  相似文献   

9.
Different ratios and sizes of Ba2F3Cl (BaFxCl2-x, x=1.5) nanorods and nanowires and orthorhombic BaF2 (BaFxCl2-x, x=2) nanorods were prepared by using a liquid-solid-solution approach at 160 approximately 180 degrees C. The processes and results of the experiments conducted to prepare monodisperse Ba2F3Cl nanorods and nanowires showed that the specific surface area increased as the initial concentrations were multiplied. Based on this fact, a mechanism for the nucleation and growth processes of these nanocrystals that have a variety of enlarged sizes was substantiated in view of the surface chemical thermodynamics (SCT). In this SCT mechanism, the specific surface energy takes into account both the surfactant oleic acid and the nanocrystal surface, and is dominated by the chemical potential of the adsorbate.  相似文献   

10.
YMn2O5nanorods were synthesized through a modified polyacrylamide gel route.The synthesis strategy in this work is based on a sol-gel process using a polyacrylamide gel method in which oxalic acid,citric acid or tartaric acid is employed as the chelating agent.In the gel routes,oxalic acid was used as a carboxyl chelating agent,while citric acid or tartaric acid was a carboxyl and hydroxyl chelating agent.The as-prepared samples were characterized by means of techniques such as X-ray powder diffraction(XRD)measurement,thermogravimetric analysis(TG),differential scanning calorimetry analysis(DSC),Fourier transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),thermal expansion measurement and field-emission scanning electron microscopy(SEM)investigations.It was found that oxalic acid is the best chelating agent with Y(NO3)3·6H2O and Mn(CH3COO)2·4H2O as precursors to prepare a single orthorhombic YMn2O5nanorods at 1000°C.Scanning electron microscope observation shows that the morphology of YMn2O5powders is significantly dependent on the chelating agent.The peaks(single orthorhombic YMn2O5nanorods)at 642,600,573,546,521,493,486,468,448 and 400cm?1were observed from FTIR spectra.The phase,surface morphology and chelation mechanisms of YMn2O5samples have been discussed on the basis of the experimental results.  相似文献   

11.
In this paper we have demonstrated that the crystallization method of amorphous colloids is convenient and feasible in the large-scale production of one-dimensional (1D) nanostructures. For the crystals with highly anisotropic structures, such as orthorhombic, trigonal, and hexagonal crystals, the crystallization generally tends to occur along the (001) axis. The preparation of orthorhombic bismuth sulfide (Bi2S3) nanorods and trigonal selenium ( t-Se) nanowires by the crystallization route was used as typical examples to illustrate the process and mechanism of crystallization. The as-prepared products were characterized with transmission electron microscopy, field-emission scanning electron microscopy, X-ray diffraction, and selected area electron diffraction. Additionally, the detailed crystal growth processes involved in the crystallization of amorphous Bi2S3 colloid were investigated by studying the morphology and structure of intermediates. It demonstrates that the growth of the nanorods is through two key steps: (1) the formation of multiple activated sites on the surface of spherical Bi2S3 colloid and (2) the subsequent preferential growth along these sites.  相似文献   

12.
Laser-induced thermal effects on the hexagonal MoO3 nanorods at different power density levels were studied using Raman spectroscopy and scanning electron microscopy techniques. The structural features of the nanorods were accompanied by varying the incident laser power from 8.0 to 600 mW by using a gradual increasing rate and a sudden increasing incident laser power. It was shown that the photoeffects observed on the MoO3 nanorods critically depends on the exposure rate. By gradually increasing the incident laser power up to 600 mW, morphology of the nanorods were completely preserved, and the observed thermal behavior was discussed on the basis of thermal contact at nanoscale. However, when the irradiation intensity was suddenly increased, it was observed that overheating of h-MoO3 nanorods at relatively lower laser powers (80 mW) sublimate the nanorods around the laser spot region. The MoO3 molecules on vapor-phase at high temperatures condense and crystallize next to the laser spot on the orthorhombic (α-MoO3) and monoclinic (β-MoO3) phases. Furthermore, the nanorods closest to the laser spot region undergo a structural phase (and morphological) transition from h-MoO3 phase to α-MoO3 phase.  相似文献   

13.
The urchin-like Bi2S3 nanostructures have been grown by a facile environmentally friendly hydrothermal method. X-ray diffraction (XRD) and Raman spectrum demonstrate that the obtained samples are composed of pure orthorhombic phase Bi2S3. Scanning electron microscopy (SEM) images and transmission electron microscopy (TEM) images reveal that it is produced as uniform urchin-like pattern with spherical symmetry. High-resolution (HR) TEM and selected-area electron diffraction (SAED) demonstrate that the nanowires which grow radially from the center of the urchin-like nanostructures toward all directions are single-crystalline and grow along the [001]. It is found that the reaction time, reaction temperature and thiourea (Tu) play key roles for the formation of urchin-like Bi2S3 nanostructures. The formation mechanism is ascribed to self-assembly and the intrinsic splitting character of the Bi2S3 structure. The urchin-like Bi2S3 composed of porous nanorods, solid nanorods and nanowires could be found potential application in optical, catalysts and sensor devices.  相似文献   

14.
TiO2 rutile nanorods of average length L = 160 +/- 40 nm and average diameter D = 15 +/- 5 nm have been synthesized through a seed-mediated growth process by TiCl4 hydrolysis in concentrated acidic solution. These nanorods were dispersed in water to yield stable (aggregation-free) colloidal aqueous suspensions. At volume fractions phi > 3%, the suspensions spontaneously display a phase separation into an isotropic liquid phase and a liquid-crystalline phase identified as nematic by X-ray scattering. At phi > 12%, the suspensions form a nematic single phase, with large order parameter, S = 0.75 +/- 0.05. Very well aligned rutile films on glass substrate were produced by spin-coating, and their photocatalytic properties were examined by monitoring the decomposition of methylene blue under UV light. We found that UV-light polarized along the quadratic axis of the rutile nanorods was most efficient for this photocatalytic reaction.  相似文献   

15.
Theoretical investigations concerning the high-pressure polymorphs, the equations of state, and the phase transitions of SnO2 have been performed using density functional theory at the B3LYP level. Total energy calculations and geometry optimizations have been carried out for all phases involved, and the following sequence of structural transitions from the rutile-type (P42/mnm) driven by pressure has been obtained (the transition pressure is in parentheses): --> CaCl2-type, Pnnm (12 GPa) --> alpha-PbO2-type, Pbcn (17 GPa) --> pyrite-type, Pa (17 GPa) --> ZrO2-type orthorhombic phase I, Pbca (18 GPa) --> fluorite-type, Fmm (24 GPa) --> cotunnite-type orthorhombic phase II, Pnam (33 GPa). The highest bulk modulus values, calculated by fitting pressure-volume data to the second-order Birch-Murnaghan equation of state, correspond to the cubic pyrite and the fluorite-type phases with values of 293 and 322 GPa, respectively.  相似文献   

16.
The cantaloupe-like particles of CeOHCO3 were synthesized in aqueous solution by using cetyltrimethylammonium bromide (CTAB) as soft template. Then, the bunchiness rods of CeO2 were obtained by calcining CeOHCO3 at 450 ℃. The results of thermogravimetric/differential thermal analysis reveal that an endothermic reaction with decomposition is involved in the transformation process from CeOHCO3 to CeO2. By scanning electron microscopy and X-ray diffraction analysis, it is found that the orthorhombic phase CeOHCO3 particles are constituted of short nanorods with diameters ranging from several tens nm to over 100 nm, and the cubic phase CeO2 rods are composed of small particles with diameter ca. 15 nm. From the results of UV-Vis absorption and photoluminescence analysis, it is found that the CeO2 possess abundant defects, and the band gaps of the CeO2 and CeOHCO3 are ca. 2.70 eV and 3.87 eV, respectively.  相似文献   

17.
ZnS nanorods doped with 0-15 mol% of Cu have been prepared by simple solvothermal process. With gradual increase in the Cu concentration, phase transformation of the doped ZnS nanorods from wurtzite to cubic was observed. Twins and stacking faults were developed due to atomic rearrangement in the heavily doped ZnS nanorods during phase transformation. UV-vis-NIR absorbance spectroscopy ruled out the presence of any impure Cu-S phase. The doped ZnS nanorods showed luminescence over a wide range from UV to near IR with peaks at 370, 492-498, 565 and 730 nm. The UV region peak is due to the near-band-edge transition, whereas, the green peak can be related to emission from elementary sulfur species on the surfaces of the nanorods. The orange emission at 565 nm may be linked to the recombination of electrons at deep defect levels and the Cu(t2) states present near the valence band of ZnS. The near IR emission possibly originated from transitions due to deep-level defects.  相似文献   

18.
Oxygen-deficient molybdenum trioxide nanorods of composition MoO2.987 (orthorhombic, a = 3.951(2) Å, b = 13.856(1) Å, c = 3.700(1) Å) were synthesized by a hydrothermal process (150–180°C, 30–50 h). MoO3 ? δ particles were 60–90 nm in diameter; their lengths were several micrometers. X-ray photoelectron and IR spectra of these nanorods were studied, The nanorods had weak paramagnetism, signifying the existence of molybdenum(V) ions in their structure.  相似文献   

19.
We report a size-manipulable synthesis of single-crystalline nanorods/nanowires of barium manganite (BaMnO(3)) and barium titanium manganite (BaTi(1/2)Mn(1/2)O(3)) by using the composite-hydroxide-mediated approach. The synthesis cleanly yields nanorods with a hexagonal perovskite structure. Typical nanorods have widths ranging between 50 and 100 nm, and the lengths can be easily controlled by time and temperature or by adding a small amount of water during the synthesis process. Resistance measurement shows that a phase transition happened at 58 K on BaMnO(3). The photoluminescence spectrum of BaTi(1/2)Mn(1/2)O(3) presents two emission peaks at wavelengths of 465 and 593 nm, corresponding to blue and green fluorescence. The ability to synthesize nanorod manganites of a desired length should enable detailed investigations of the size-dependent evolution of magnetism, magnetoresistance, nanoscale phase separation, and realization of a nanodevice of magnetic sensors.  相似文献   

20.
The simultaneous phase- and size-controlled synthesis of TiO(2) nanorods was achieved via the non-hydrolytic sol-gel reaction of continuously delivered two titanium precursors using two separate syringe pumps. As the injection rate was decreased, the length of the TiO(2) nanorods was increased and their crystalline phase was simultaneously transformed from anatase to rutile. When the reaction was performed by injecting titanium precursors contained in two separate syringes into a hot oleylamine surfactant solution with an injection rate of 30 mL/h, anatase TiO(2) nanorods with dimensions of 6 nm (thickness) x 50 nm (length) were produced. When the injection rate was decreased to 2.5 mL/h, star-shaped rutile TiO(2) nanorods with dimensions of 25 nm x 200 nm and a small fraction of rod-shaped anatase TiO(2) nanorods with dimensions of 9 nm x 100 nm were synthesized. Pure star-shaped rutile TiO(2) nanorods with dimensions of 25 nm x 450 nm were synthesized when the injection rate was further decreased to 1.25 mL/h. The simultaneous phase transformation and length elongation of the TiO(2) nanorods were achieved. Under optimized reaction conditions, as much as 3.5 g of TiO(2) nanorods were produced. The TiO(2) nanorods were used to produce dye-sensitized solar cells, and the photoconversion efficiency of the mixture composed of star-shaped rutile TiO(2) nanorods and a small fraction of anatase nanorods were comparable to that of Degussa P-25.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号