首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensor based on glassy carbon (GC) electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) and a poly-l-lysine (PLL) film is proposed for diospyrin determination in nanomolar concentrations with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent catalytic activity presenting much higher peak currents than those measured on a bare GC electrode. Linear response range, sensitivity and limit of detection (LOD) were of 1-120 nmol l−1, 220.46 nA l nmol−1 cm−2 and 0.3 nmol l−1, respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation (R.S.D.), was measured as 4.4% for 10 experiments in 50 μmol l−1 diospyrin samples. The developed sensor was applied for the determination of diospyrin in the crude extracts of the stem-bark of Diospyros montana Roxb. and the average recovery for these samples was 101.9 (±3.1)%.  相似文献   

2.
The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at −0.7 V versus SCE. The sensor presented better performance in 0.1 mol l−1 acetate buffer at pH 4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200 nmol l−1 was obtained with a sensitivity of 3.057 nA l nmol−1 cm−2. The detection limit for 4-NP determination was 7.5 nmol l−1. The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (± 0.7)%.  相似文献   

3.
The construction of amperometric enzymeless biosensors for phenolic compounds determination, using carbon paste electrode modified with copper phtalocyanine (CuPc) and histidine (His), based on the chemistry of the dopamine β-monooxygenase (DβM) enzyme that catalyzes the hydroxylation of the dopamine and its analogs is shown. The modified carbon paste was evaluated on electrodes constructed in two ways: putting the paste into a cavity of a rotating disk electrode and a platinum slide electrode fixed into a glass tube. The sensor in hydrodynamic conditions presented a linear response range between 30 and 250 μmol l−1, with a sensitivity of 4.6±0.1 nA l μmol−1 cm−2 for catechol, response time of 3 s and lifetime of about 50 days when stored at room temperature. The sensor in static conditions showed a linear response range from 40 to 250 μmol l−1, with a sensitivity of 0.30±0.01 nA l μmol−1 cm−2 for catechol. The sensors presented the following relative response order for dopamine and some analog species: catechol>dopamine>guaiacol>serotonin>phenol.  相似文献   

4.
A simple end-column electrochemical detector was designed and attached to an available commercial capillary electrophoresis instrument with UV detection to detect different kind of herbicides and to determinate methyl-4-aminophenyl-sulfonylcarbamate (asulam) in water samples. The designed cell is very easy to assemble and disassemble in a short period of time; the working electrode positioning is also quickly achieved without micropositioners. The alignment between working electrode and capillary outlet was very reproducible for the all checked electrodes; the R.S.D. obtained was lower than 6.0% for 100 μm gap distance. In this mode, the non-electroactive and electroactive compounds could be detected by UV and electrochemical detection, respectively at the same time. The electrochemical determination of asulam using micellar electrokinetic capillary chromatography (MEKC) is the first time that is reported. In both detection systems, a linear range was obtained for asulam concentrations lower than 25.0 mg l−1, in boric acid 0.020 mol l−1 at pH 8.20 and containing 0.025 mol l−1 of sodium dodecyl sulfate, to obtain selectivity additional separation by the micellar distribution process. Under these conditions, an experimental detection limit of 0.4 mg l−1 was achieved. A new experimental scheme is also described for asulam determination in tap waters with a previous preconcentration step. Using both, UV and electrochemical detection, with a previous extraction procedure, the detection limits of asulam in tap water samples were of 1.0 and 0.8 μg l−1, respectively.  相似文献   

5.
Yasri NG  Halabi AJ  Istamboulie G  Noguer T 《Talanta》2011,85(5):2528-2533
A new simple chronoamperometry methodology was developed for the ultrasensitive determination of lead ions using a PEDOT:PSS coated graphite carbon electrode. The polymer was directly coated on a graphite carbon electrode and characterized using simple cycle voltammetric measurements. The presence of lead ions induced a cathodic peak starting at −550 ± 10 mV vs. Ag/AgCl, and an anodic peak starting at −360 ± 10 mV vs. Ag/AgCl. Electroaccumulation of lead ions onto the PEDOT:PSS modified electrode was performed at −650 mV vs. Ag/AgCl for 30 s in a pH 2.2 hydrochloric acid solution. Chronoamperometry measurements were carried out at −350 mV vs. Ag/AgCl allowing the oxidation of accumulated lead. Using this method, lead ions were detected for concentrations ranging between 2.0 nmol L−1 and 0.1 μmol L−1 (R2 = 0.999). The detection limit was calculated to be 0.19 nmol L−1 and the quantification limit of 0.63 nmol L−1. The method was shown to be highly precise and sensitive, negligible interference was detected from other metal ions. The proposed method was successfully applied for the detection of lead ions in vegetables.  相似文献   

6.
Quintino MS  Angnes L 《Talanta》2004,62(2):231-236
This paper presents a simple, rapid and reproducible method of analysis of salbutamol in pharmaceutical products, utilizing batch injection analysis (BIA) associated with amperometric detection. A study of salbutamol oxidation demonstrated a strong dependence between electrode fouling and pH. All determinations were done utilizing a glassy carbon electrode in presence of 3.0 mol l−1 NaOH. A large linear dynamic range from 8×10−7 to 2×10−4 mol l−1 was obtained by using an injected volume of 100 μl with a detection limit of 2.5×10−7 mol l−1. R.S.D. of 0.92% for 50 successive injections of 4×10−6 mol l−1 of salbutamol and a sample throughput of 60 samples per hour were achieved. The method was applied for salbutamol quantification in syrups.  相似文献   

7.
A simple and sensitive liquid chromatographic method has been developed for the determination of low molecular weight aliphatic amines after their pre-column derivatization with naphthalene-2,3-dicarboxaldehyde (NDA). Derivatization conditions, including the NDA concentration, reaction pH and reaction time have been investigated for method optimization. The chromatographic separation of five amines was performed on ABZ PLUS column using mobile phase of methanol-water (80:20, v/v) at a flow rate of 0.2 mL min−1. The detection was carried out with a 6 mm glassy carbon electrode at the applied potential of 0.7 V versus Ag/AgCl reference electrode. The detection limits were between 23.3 and 34.4 nmol L−1 of amines with a sample injection volume of 2 μL. The present method was applied for the determination of aliphatic amines in lake water. The recovery ranged 52.2-127.9%. The RSD in analytes retention time was less than 0.3% and 2.4% for intra- and inter-day analyses, respectively. The RSD in peak area was below 5.8% for both intra-day and inter-day analyses. The total analysis was completed within 20 min.  相似文献   

8.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

9.
Wei J  He JB  Cao SQ  Zhu YW  Wang Y  Hang GP 《Talanta》2010,83(1):190-196
A nonionic poly(2-amino-5-mercapto-thiadiazole) film was electrodeposited on a solid carbon paste electrode via a potential scanning procedure, and used for amperometric sensing of ascorbic acid (AA), dopamine (DA) and serotonin (ST). The highly electrocatalytic activity of the sensor to the three analytes was demonstrated from the sensitive and well separated voltammetric signals. The polymer film did not show significant accumulation effect on all the three species, reducing the fouling and deactivation of the electrode surface as well as the mutual interference among the analytes. The sensor achieved amperometric sensitivities of 1.92 nA (nmol L−1)−1 cm−2 to AA in the linear range of 0.025-1.95 μmol L−1, 3.76 nA (nmol L−1)−1 cm−2 to DA and 7.00 nA (nmol L−1)−1 cm−2 to ST both in the linear range of 0.02-1.56 μmol L−1. The lowest detection limits were found to be 1.5, 0.7 and 0.4 nmol L−1 for AA, DA and ST, respectively. This sensor was successfully employed for the successive determination of AA, DA and ST in pharmaceutical samples. The good antifouling property and reproducibility of the proposed sensor can be attributed to the nonionic polymer film without electrostatic attraction to the ionized species in the solutions.  相似文献   

10.
Ji X  He Z  Ai X  Yang H  Xu C 《Talanta》2006,70(2):353-357
A competitive immunoassay for clenbuterol (CLB) based on capillary electrophoresis with chemiluminescence (CL) detection was established. The method was based on the competitive reaction of horseradish peroxidase (HRP)-labeled CLB (CLB-HRP) and free CLB with anti-CLB antiserum. The factors affecting the electrophoresis and CL detection were systematically investigated with HRP as a model sample. Under the optimal conditions, the tracer CLB-HRP and the immunoassay complex were separated, and the linear range and the detection limit (S/N = 3) for CLB were 5.0-40 nmol l−1 and 1.2 nmol l−1, respectively. The proposed method has been applied satisfactorily in the analysis of urine sample.  相似文献   

11.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

12.
An electrochemical preconcentration at a controlled potential on the electrode in a flow-through mode followed by graphite furnace atomic absorption spectrometric (GFAAS) detection is proposed for determination of trace amounts of palladium. After electrolysis the polarization of the electrodes was changed and deposited metal was dissolved electrochemically in the presence of an appropriate stripping reagent. Conditions for the electrodeposition, such as pH of the solutions, a deposition potential, dissolution potential and a composition of stripping solution were optimised. The graphite electrode (GE) and glassy carbon electrode (GCE) were tested for the palladium reduction process. The detection limit of 0.05 ng ml−1 Pd (1 pg) was obtained after palladium preconcentration on the GCE and dissolution with 0.2 mol l−1 thiourea in 0.1 mol l−1 HCl followed by GFAAS detection. The method was applied for the determination of palladium in spiked tap water and road dust samples.  相似文献   

13.
Water-soluble l-cysteine-capped-CdS nanoparticles were prepared in aqueous solution at room temperature through a straightforward one-pot process by using safe and low-cost inorganic salts as precursors, and characterized by transmission electron microscopy, X-ray diffraction spectrometry, Fourier transform infrared spectrometry, spectrofluorometry and ultraviolet-visible spectrometry. The prepared l-cysteine-capped-CdS nanoparticles were evaluated as fluorescence probe for Hg(II) detection. The fluorescence quenching of the l-cysteine-capped-CdS nanoparticles depended on the concentration and pH of Hg(II) solution. Maximum fluorescence quenching was observed at pH 7.4 with the excitation and emission wavelengths of 360 nm and 495 nm, respectively. Quenching of its fluorescence due to Hg(II) at the 20 nmol l−1level was unaffected by the presence of 5 × 106-fold excesses of Na(I) and K(I), 5 × 105-fold excesses of Mg(II), 5 × 104-fold excesses of Ca(II), 500-fold excesses of Al(III), 91-fold excesses of Mn(II), 23.5-fold excesses of Pb(II), 25-fold excesses of Fe(III), 25-fold excesses of Ag(I), 8.5-fold excesses of Ni(II) and 5-fold excesses of Cu(II). Under optimal conditions, the quenched fluorescence intensity increased linearly with the concentration of Hg(II) ranging from 16 nmol l−1 to 112 nmol l−1. The limit of detection for Hg(II) was 2.4 nmol l−1. The developed method was applied to the detection of trace Hg(II) in aqueous solutions.  相似文献   

14.
The preparation of a tyrosinase biosensor based on the immobilization of the enzyme onto a glassy carbon electrode modified with electrodeposited gold nanoparticles (Tyr-nAu-GCE) is reported. The enzyme immobilized by cross-linking with glutaraldehyde retains a high bioactivity on this electrode material. Under the optimized working variables (a Au electrodeposition potential of −200 mV for 60 s, an enzyme loading of 457 U, a detection potential of −0.10 V and a 0.1 mol l−1 phosphate buffer solution of pH 7.4 as working medium) the biosensor exhibited a rapid response to the changes in the substrate concentration for all the phenolic compounds tested: phenol, catechol, caffeic acid, chlorogenic acid, gallic acid and protocatechualdehyde. A R.S.D. of 3.6% (n = 6) was obtained from the slope values of successive calibration plots for catechol with the same Tyr-nAu-GCE with no need to apply a cleaning procedure to the biosensor. The useful lifetime of one single biosensor was of at least 18 days, and a R.S.D. of 4.8% was obtained for the slope values of catechol calibration plots obtained with five different biosensors. The kinetic constants and the analytical characteristics were calculated for all the phenolic compounds tested. The Tyr-nAu-GCE was applied for the estimation of the phenolic compounds content in red and white wines. A good correlation of the results (r = 0.990) was found when they were plotted versus those obtained by using the spectrophotometric method involving the Folin-Ciocalteau reagent.  相似文献   

15.
Di J  Zhang F 《Talanta》2003,60(1):31-36
This paper described the determination of trace manganese using linear sweep voltammetry at a pretreatment glassy carbon electrode. The glassy carbon electrode pretreated by electrochemical method in the 0.1 mol l−1 NaOH solution greatly improved the electrode responsibility in the determination of manganese(II). The barrier to the detection of low manganese concentration was overcome by means of autocatalytic effect of manganese oxide deposited on the electrode in advance. Under the optimum experiments condition (0.04 mol l−1 NH3-NH4Cl buffer solution, pH 9.0), the linear range was 4×10−8 to 1×l0−6 mol l−1 Mn(II) for linear sweep voltammetry and 1×10−9 to 4×10−8 mol l−1 Mn(II) for convolution voltammetry. The relative standard deviation for 2×10−8 mol l−1 Mn(II) is 3.4%. The proposed method is simple, rapid, sensitive and selective. It had been applied to the determination of trace manganese in samples with satisfactory results.  相似文献   

16.
A procedure for the extraction of free amino acids was applied to isolate S-methylmethionine (SMM) from late harvest Petit Manseng grapes. Grapes were destemmed and crushed, and the obtained clarified must was percolated through cation-exchange resins (Dowex 50 WX4-100). The retained compounds were eluted with ammonia solution and the extract was finally concentrated. Taking into account the potential DMS (PDMS using heat-alkaline treatment assay) of the initial grape juice used (51.5 nmol mL−1) and the concentration factor of the extract (17.9-fold), the PDMS of the final extract (678 nmol mL−1) gave an overall recovery of 73.5% for juice SMM. This compound was identified and quantified (484.5 nmol mL−1 relatively to [2H3]-SMM used as internal standard) by its selective detection in this extract without derivatization by MALDI-TOF-MS using instrumentation and procedures previously reported to analyze SMM in complex natural extracts. SMM and 22 other amino acids in the initial must and in the final SMM extract were also determined using a Biochrom 30 amino acid analyser with post-column ninhydrin derivatization. SMM peak identification and quantification (401.2 nmol mL−1 relatively to norleucine used as internal standard) were carried out by comparison with commercial SMM.  相似文献   

17.
Védrine C  Fabiano S  Tran-Minh C 《Talanta》2003,59(3):535-544
An amperometric enzyme sensor using tyrosinase, also called polyphenol oxidase (PPO), was constructed for determination of phenolic compounds and herbicides. The enzyme was entrapped in a conducting polymer, poly 3,4-ethylenedioxythiophene (PEDT), electrochemically generated on a glassy carbon electrode. Several experimental parameters in the electropolymerisation process and working conditions were determined to optimise biosensor performances. Mono-phenol and di-phenol were tested in oxygenated solutions, by amperometric measurements at −200 mV (vs. SCE) in a batch system. The limit of detection of these molecules ranges from 5 to 500 nM. Detection of herbicides was obtained from the inhibition of tyrosinase electrode responses. The limit of detection for atrazine and diuron was 1 and 0.5 mg l−1 respectively. These data suggest that PEDT film is a promising PPO immobilisation method.  相似文献   

18.
The electrochemical detection of carbaryl at low potentials, in order to avoid matrix interferences, is an important challenge. This study describes the development, electrochemical characterization and utilization of a glassy carbon (GC) electrode modified with multi-wall carbon nanotubes (MWCNT) plus cobalt phthalocyanine (CoPc) for the quantitative determination of carbaryl in natural waters. The surface morphology was examined by scanning electron microscopy, enhanced sensitivity was observed with respect to bare glassy carbon and electrocatalytic effects reduced the oxidation potential to +0.80 V vs. SCE in acetate buffer solution at pH 4.0. Electrochemical impedance spectroscopy was used to estimate the rate constant of the oxidation process and square-wave voltammetry to investigate the effect of electrolyte pH. Square-wave voltammetry in acetate buffer solution at pH 4.0, allowed the development of a method to determine carbaryl, without any previous step of extraction, clean-up, or derivatization, in the range of 0.33-6.61 μmol L−1, with a detection limit of 5.46 ± 0.02 nmol L−1 (1.09 ± 0.02 μg L−1) in water. Natural water samples spiked with carbaryl and without any purification step were successfully analyzed by the standard addition method using the GC/MWCNT/CoPc film electrode.  相似文献   

19.
Di J  Bi S  Zhang F 《Talanta》2004,63(2):265-272
The electrochemical behavior of maltol on a glassy carbon (GC) electrode was investigated. The results were applied to differential pulse voltammetric determination of maltol in beverages pretreated by ultrafiltration. Under the optimum experimental conditions, the linear range is 1×10−5 to 6×10−4 mol l−1 maltol and the relative standard deviation for 0.4 mmol l−1 maltol is 0.6% (n=9). The detection limit was 5 μmol l−1. Furthermore, silica sol-gel film on GC electrode could be used as suitable selective membrane, which integrated selective membrane on the electrode and substituted for the pretreatment of ultrafiltration. Under the above conditions, maltol was determined by semi-differential linear sweep voltammetry at a silica sol-gel modified GC electrode in the concentration range of 5×10−6 to 5×10−4 mol l−1. The detection limit was 2 μmol l−1 and the relative standard deviation for 0.1 mmol l−1 maltol was 0.7% (n=7). The proposed method is of sensitivity, simplicity, rapidness and no contamination. It had been applied to the direct determination of maltol in beverages such as grape wines, drinks and beers without any pretreatment. The results obtained with the present method were satisfactory with those obtained by spectrophotometry. It could be used as a simple and practical method for the determination of the flavor enhancer maltol in beverages.  相似文献   

20.
This work reports the advantages of a label free electrochemical aptasensor for the detection of lysozyme. The biorecognition platform was obtained by the adsorption of the aptamer on the surface of a carbon paste electrode (CPE) previously blocked with mouse immunoglobulin under controlled-potential conditions. The recognition event was detected from the decrease in the guanine and adenine electro-oxidation signals produced as a consequence of the molecular interaction between the aptamer and lysozyme. The biosensing platform demonstrated to be highly selective even in the presence of large excess (9-fold) of bovine serum albumin, cytochrome C and myoglobin. The reproducibility for 10 repetitive determinations of 10.0 mg L−1 lysozyme solution was 5.1% and 6.8% for guanine and adenine electro-oxidation signals, respectively. The detection limits of the aptasensor were 36.0 nmol L−1 (if considering guanine signal) and 18.0 nmol L−1 (if taking adenine oxidation current). This new sensing approach represents an interesting and promising alternative for the electrochemical quantification of lysozyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号