首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inefficient electrocatalysts and high-power consumption are two thorny problems for electrochemical hydrogen(H2)production from acidic water electrolysis.Herein we report the one-pot precise synthesis of ultrafine Au core-Pt Au alloy shell nanowires(Au@PtxAu UFNWs).Among them,Au@Pt0.077 Au UFNWs exhibit the best performance for formic acid oxidation reaction(FAOR)and hydrogen evolution reaction(HER),which only require applied potentials of 0.29 V and-22.6 m V to achieve a current density of 10 m A cm-2,respectively.The corresponding formic acid electrolyzer realizes the electrochemical H2 production at a voltage of only 0.51 V with 10 m A cm-2 current density.Density functional theory(DFT)calculations reveal that the Au-riched Pt Au alloy structure can facilitates the direct oxidation pathway of FAOR and consequently elevates the FAOR activity of Au@Pt0.077 Au UFNWs.This work provides meaningful insights into the electrochemical H2 production from both the construction of advanced bifunctional electrocatalysts and the replacement of OER.  相似文献   

2.
Lithium metal batteries are considered as high energy density battery systems with very promising prospects and have bee n widely studied.However,The uncon trollable plating/strippi ng behavior,infinite volume change and den drites formation of lithium metal anode restrict the applicati on.The unc on trolled n ucleati on of lithium caused by the non uniform multi-physical field distributions,can lead to the undesirable lithium deposition.Herein,a graphene composite uniformly loaded with Ag nano-particles(Ag NPs)is prepared through a facile Gamma ray irradiation method and assembled into self-supported film with layered structure(Ag-rGO film).Whe n such film is used as a lithium metal an ode host,the uncontrolled deposition is converted into a highly nucleation-induced process.On one hand,the Ag NPs distributed between the in terlayers of graphe ne can preferentially induce lithium nu cleati on and en able uniform deposition morphology of lithium between interlayers.On the other hand,the stable layered graphene structure can accommodate volume change,stabilize the interface between anode and electrolyte and inhibit dendrites formation.Therefore,the layered Ag-rGO film as anode host can reach a high Coulombic efficiency over 93.3% for 200 cycle(786 h)at a current density of 1 mA cm-2 for 2 mAh cm-2 in carbonate-based electrolyte.This work proposes a facile Gamma ray irradiation method to prepare metal/3D-skeleton structure as lithium anode host and demonstrates the potential to regulate the lithium metal deposition behaviors via manipulating the distribution of lithiophilic metal(e.g.Ag)in 3D frameworks.This may offer a practicable thinking for the subsequent design of the lithium metal anode.  相似文献   

3.
中国纤维素乙醇技术的研究进展   总被引:1,自引:0,他引:1  
杨斌  Charles E.Wyman 《化学进展》2007,19(7):1072-1075
中国面临着严重的能源短缺和环境污染问题,中国政府正在局部几个省份内政策性鼓励燃料乙醇生产和使用.尽管当前主要是用玉米和谷物作为生产乙醇的原料,然而中国具有大量潜在的低成本的纤维素生物质原料,可以极大地扩大乙醇的产量,降低原料成本.近20年来,由于技术的革命性进步,已使得纤维素乙醇的生产成本从4美元/加仑以上,降低至约1.2-1.5美元/加仑.其中,每吨生物质约44美元.因此,目前乙醇掺汽油具有十分强的市场竞争力.已有几个公司正在建造首批商业纤维素乙醇工厂,虽然这些刚起步的小型设施在合理利用和管理上风险较小,但规模经济需要较大型工厂.尽管配送生物质原料的成本会随需求的增加而增加,但在乙醇生产基础上的生物精炼技术的发展,尤其是化工产品和动力的协同生产,将会使全过程的经济可行性大大提高.进一步深入的基础研究,将解决低成本下实现纤维素的完全利用,以确保在无政策性补贴的前提下,真正使纤维素乙醇成为具有市场竞争力的低成本纯液体燃料.  相似文献   

4.
Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary ligand strategy to prepare zeolitic imidazolate frameworks(ZIFs)-derived precursors,wherein the addition of secondary ligand endows precursors with the capabilities to transform into porously interweaved encapsulation-nanotubes structured composites after calcination.The optimal catalyst,i.e.,termed as Fe6-M/C-3,exhibits excellent durability with 88.8%current retention after 50,000 seconds in 0.1 M HClO4solution by virtue of nanoparticles-encapsulation features,which is more positive than the benchmark commercial 20 wt%Pt/C catalyst.Moreover,a promising maximum power density of Fe6-M/C-3 as cathode catalyst was also dem on strated in proton exchange membrane fuel cells(PEMFCs)measurements.Therefore,this binary ligand approach to the fabrication of hierarchically porous structures would also have significant implications for various other electrochemical reactions.  相似文献   

5.
Currently,pyrolysis as the most widely used method still has some key issues not well resolved for synthesis of carbon-supported single-atom catalysts(C-SACs),e.g.,the sintering of metal atoms at high temperature as well as the high cost and complicated preparations of precursors.In this report,molten salts are demonstrated to be marvellous medium for preparation of C-SACs by pyrolysis of small molecular precursors(ionic liquid).The ultrastrong polarity on one hand establishes robust interaction with precursor and enables better carbonization,resulting in largely enhanced yield.On the other hand,the aggregation of metal atoms is effectively refrained while no nanoparticle or cluster is formed.By this strategy,a C-SAC with atomically dispersed Fe-N4 sites and a high specific area over 2000 m2 g-1 is obtained,which illustrates high ORR activity in both acid and alkaline media.Moreover,this SAC exhibits superior methanol tolerance and stability after acid soaking at 85℃ for 48 h.It is believed that the molten-salts-assisted pyrolysis can be developed into a routine strategy as it not only can largely simply the synthesis of C-SACs,but also can be extended to prepare other types of SACs.  相似文献   

6.
镧对Mg-Si合金中Mg2Si相变质的影响   总被引:1,自引:0,他引:1  
研究了Mg-5Si合金中La的添加对初生Mg2Si相变质的影响。结果表明,适量的La能够有效地变质初生Mg2Si相。基于本文的研究,在添加约0.5%La时,获得了最佳的变质效果,此时,初生Mg2Si相的尺寸减小到25μm以下,其形态从粗大的树枝形状变为多面体形状。然而,当La增加到0.8%或者更高时,初生Mg2Si相又生长为粗大的树枝形态。而且,在凝固过程中发现形成了一些LaSi2化合物,这些化合物的数量随着La的增加而呈现逐渐增加的趋势。  相似文献   

7.
建立STD/KED模式-电感耦合等离子体质谱(ICP-MS)法同时测定天然水体中铍、硼、钛、钒、铬、锰、钴、镍、铜、锌、钼、镉、锑、钡、铊、铅、铁、砷和硒19种元素的分析方法。仪器调谐校准后,样品在线加入锂、钪、铑、铋校准溶液校正,以标准曲线内标法定量分析。标准曲线相关系数均大于0.999,样品加标回收率为92.6%~103.6%,质控样品测定值相对标准偏差为0.20%~2.6%(n=6),方法检出限为0.01~0.70μg/L。该方法灵敏度高,操作简便,节省人力,能满足天然水体中19种元素的同时检测需要。  相似文献   

8.
吕秉玲 《化学学报》1988,46(9):854-861
由于在研究的体系中, Na2SO4是非对称电解质, 且能生成水合盐, 故推导了由非对称型电解质与非电解质所构成的混合溶液的各组分的活度系数关联通式, 并在此基础上讨论了水合盐液固平衡的计算方法.  相似文献   

9.
从黄花棘豆的总皂苷中分离出两个新皂苷1和2.经光谱分析及化学方法确证,1为3-O-[α-L-鼠李吡喃糖基(1→2)-β-D-葡萄吡喃糖基(1→4)-β-D-葡萄吡喃糖醛酸基]-黄豆醇B;2为3-O-[α-L-鼠李吡喃糖基(1→2)-α-L-阿拉伯吡喃糖基(1→4)-β-D-葡萄吡喃糖醛酸基]-黄豆醇B.  相似文献   

10.
二氧化钛纳米管由于其新奇的光电、催化、气敏等性能引起了广泛的关注,在太阳能电池、光催化、环境净化、气体传感器等领域有潜在的应用价值.本文概述了近年来在制备方法、反应机理和组成、晶型和形貌及掺杂和应用方面的进展,并讨论了今后可能的研究发展方向.  相似文献   

11.
Planarized intramolecular charge transfer(PLICT)state can facilitate the fluorescence process thanks to the relative excellent planarity.Recently,we have discovered that the excited state quinone-conformation induced planarization(ESQIP)occurring on tetraphenylpyrazine(TPP)based derivatives could furnish them with PLICT feature.Unlike to the well-known intramolecular charge transfer,strengthening the electron-donating nature on the donor(D)moiety did not impair the PLICT.The calculation results showed that planarization of the TPP based compounds scarcely accompanied with energy wastage while amount of energy was required for the torsion on geometries.In the polar solvents,the energy consumption for planarization could further decrease,but that for twisting structure would increase.To take advantage of the transformation of the frontier orbitals'distribution,the PLICT type materials would perform a potential application on organic light-emitting diodes(OLEDs).  相似文献   

12.
The design of efficient,stable,and economical electrocatalysts for oxygen and hydrogen evolution reaction(OER and HER)is a major challenge for overall water splitting.Herein,a hierarchical structured CoP/carbon nanofibers(CNFs)composite was successfully synthesized and its potential application as a high-efficiency bifunctional electrocatalyst for overall splitting water was evaluated.The synergetic effect of two-dimensional(2D)CoP nanosheets and on e-dimensi on al(1D)CNFs endowed the CoP/CNFs composites with abundant active sites and rapid electron and mass transport pathways,and thereby significantly improved the electrocatalytic performances.The optimized CoP/CNFs delivered a current density of 10 mA cm-2 at low overpotential of 325 mV for OER and 225 mV for HER.In the overall water splitting,CoP/CNFs achieved a low potential of 1.65 V at 10 mA cm-2.The facile strategy provided in the present work can facilitate the design and development of multifunctional non-noble metal catalysts for energy applications.  相似文献   

13.
Two-dimensional(2 D) materials attracted substantial attention due to their extraordinary physical properties resulting from the unique atomic thickness. 2 D materials could be considered as material systems with flat surfaces at both sides, while the van der Waals gap is a natural out-of-plane interface between two monolayers. However, defects are inevitably presented and often cause significant surface and interface reconstruction, which modify the physical properties of the materials being investigated. In this review article, we reviewed the effort achieved in probing the defect structures and the reconstruction of surface and interface in novel 2 D materials through aberration corrected low voltage scanning transmission electron microscopy(LVSTEM). The LVSTEM technique enables us to unveil the intrinsic atomic structure of defects atom-by-atom, and even directly visualize the dynamical reconstruction process with single atom precision. The effort in understanding the defect structures and their contributions in the surface and interface reconstructions in 2 D materials shed light on the origin of their novel physical phenomenon, and also pave the way for defect engineering in future potential applications.  相似文献   

14.
Polymeric carbon nitride(CN)semiconductor by thermal condensation of N-rich precursors has attracted much attention for its capability ranging from photocatalytic and photoelectrochemical energy conversion to biosensing.However,the influence of condensation process on the final structure of CN was rarely studied,making the condensation kinetic far from be fully optimized.Herein,we report the preparation of CN by a simple condensation kinetics modulation using a faster ramping rate during the polymerization process.The modified condensation recipe was even simpler than the conventional one,but led to an improved photocatalytic H2 evolution up to 3 times without any additional chemicals or other complements.Detailed mechanism studies revealed the increase of crystallinity and surface area due to the rapid condensation played the key roles.This work would offer a more facile and effective way to prepare bulk CN for large-scale industrial applications of bulk CN with higher photocatalytic actives for sustainable energy,environmental and biosensing.  相似文献   

15.
Water/alcohol soluble cathode interfacial materials(CIMs)are playing important roles in optoelectronic devices such as organic light emitting diodes,perovskite solar cells and organic solar cells(OSCs).Herein,n-doped solution-processable single-wall carbon nanotubes(SWCNTs)-containing CIMs for OSCs are developed by dispersing SWCNTs to the typical CIMs perylene diimide(PDI)derivatives PDIN and PDINO.The Raman and X-ray photoelectron spectroscopy(XPS)measurement results illustrate the ndoped behavior of SWCNTs by PDIN/PDINO in the blend CIMs.The blended and n-doped SWCNTs can tune the work function and enhance the conductivity of the PDI-derivative/SWCNT(PDI-CNT)composite CIMs,and the composite CIMs can regulate and down-shift the work function of cathode,reduce the charge recombination,improve the charge extraction rate and enhance photovoltaic performance of the OSCs.High power conversion efficiency(PCE)of 17.1%and 17.7%are obtained for the OSCs based on PM6:Y6 and ternary PM6:Y6:PC71 BM respectively with the PDI-CNTcomposites CIMs.These results indicate that the ndoped SWCNT-containing composites,like other n-doped nanomaterials such as zero dimensional fullerenes and two dimensional graphenes,are excellent CIMs for OSCs and could find potential applications in other optoelectronic devices.  相似文献   

16.
Cocatalysts play a vital role in accelerating the reaction kinetics and improving the charge separation of photocatalysts for solar hydrogen production.The promotion of the photocatalytic activity largely relies on the loading approach of the cocatalysts.Herein,we introduce a metal-seed assistant photodeposition approach to load the hydrogen evolution cocatalyst of platinum onto the surface of Ta3N5 photocatalyst,which exhibits about 3.6 times of higher photocatalytic proton reduction activity with respect to the corresponding impregnation or photodeposition loading.Based on our characterizations,the increscent contact area of the cocatalyst/semiconductor interface with metal-seed assistant photodeposition method is proposed to be responsible for the promoted charge separation as well as enhanced photocatalytic H2 evolution activity.It is interesting to note that this innovative deposition strategy can be easily extended to loading of platinum cocatalyst with other noble or non-noble metal seeds for promoted activities,demonstrating its good generality.Our work may provide an alternative way of depositing cocatalyst for better photocatalytic performances.  相似文献   

17.
By virtue of the crucial effect of the crystal structure and transition metal(TM)redox evolution on the performance of LiNixCoyMnzO2(NCM)cathode,systematical investigation is carried out to better understand the charge mechanism upon deep charging.Based on the results of X-ray diffraction and highresolution transmission electron microscope,phase transformations existing on particle surface are promoted by high potential because of the deeper lithium vacancies,accompanied by more substantial structure instability.Soft X-ray absorption spectroscopy indicates that Ni acts as the major contributor to charge compensation while Co displays a remarkable redox activity over the deep charge range.The elevated integrated intensity of pre-edge in O K-edge spectra reveals the extensive amount of holes formed in O 2 p orbitals and the enhanced hybridization of TM 3 d-O 2 p orbitals.Considering the close relationship between thermal behavior and structural evolution,the tendency of phase transitions and O2 release upon heating is accelerated by voltage rise,demonstrating the aggravated instability due to deeper Li utilization.Remaining Li contents in NCM are employed to estimate the amount of oxygen released in structural transformation and its detrimental effect on stability declares Li contentdependent characteristics.Furthermore,the extended Li vacancies,higher proportion of Ni4+and stronger orbital hybridization are considered as three factors impeding the thermal stability of the highlydelithiated NCM.  相似文献   

18.
建立了用ICP-AFS同时测定碳酸锂中11种微量金属杂质元素的方法。加入甲烷可改善检出限,方法简便,样品分析结果与AAS法结果一致。  相似文献   

19.
Single-ion conducting solid polymer electrolytes are expected to play a vital role in the realization of solid-state Li metal batteries.In this work,a lithiated Nafion(Li-Nafion)-garnet ceramic Li6.25La3 Zr2 Al0.25O12(LLZAO)composite solid electrolyte(CSE)membrane with 30μm thickness was prepared for the first time.By employing X-ray photoelectron spectroscopy and transmission electron microscope,the interaction between LLZAO and Li-Nafion was investigated.It is found that the LLZAO interacts with the Li-Nafion to form a space charge layer at the interface between LLZAO and Li-Nafion.The space charge layer reduces the migration barrier of Li-ions and improves the ionic conductivity of the CSE membrane.The CSE membrane containing 10 wt%LLZAO exhibits the highest ionic conductivity of2.26×10-4 S cm-1 at 30℃among the pristine Li-Nafion membrane,the membrane containing 5 wt%,20 wt%,and 30 wt%LLZAO,respectively.It also exhibits a high Li-ion transference number of 0.92,and a broader electrochemical window of 0-+4.8 V vs.Li+/Li than that of 0-+4.0 V vs.Li+/Li for the pristine Li-Nafion membrane.It is observed that the CSE membrane not only inhibits the growth of Li dendrites but also keeps excellent electrochemical stability with the Li electrode.Benefitting from the above merits,the solid-state LiFePO4/Li cell fabricated with the CSE membrane was practically charged and discharged at 30℃.The cell exhibits an initial reversible discharge specific capacity of 160 mAh g-1 with 97%capacity retention after 100 cycles at 0.2 C,and maintains discharge specific capacity of 126 mAh g-1 after500 cycles at 1 C.The CSE membrane prepared with Li-Nafion and LLZAO is proved to be a promising solid electrolyte for advanced solid-state Li metal batteries.  相似文献   

20.
赵桂兰 《化学教育》2007,28(5):21-23
1教材分析上海科学技术出版社出版的高一化学新教材的第二章以“开发海水中的化学资源”为题,分“以食盐为原料的化工产品”、“海水中的氯”、“从海水中提取的重要元素”3节介绍卤素及其化合物的知识。本章知识安排强调化学与生活、化学与化工生产的联系。从学生身边的、熟悉  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号