首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC), were investigated for the separation of 12 aromatic sulphonate compounds. In CZE, although the voltage applied, the buffer concentration and the pH were optimized for effective separation of the compounds studied, under the best conditions four of the five amino compounds coeluted, as did naphthalene-1-sulphonic acid and naphthalene-2-sulphonic acid. In MEKC, sodium dodecyl sulphate (SDS) and Brij 35 were chosen as the anionic and nonionic surfactants and the effect of the concentration of micelles was examined. The effect of adding methanol as the organic modifier was also investigated with each of these micellar systems. All the analytes, including the isomers, were completely separated by use of MEKC with Brij 35 but when SDS was used only 11 compounds were separated because two amino compounds coeluted.  相似文献   

2.
Two modes of capillary electrophoresis (CE)--free-solution capillary zone electrophoresis (CZE) and sodium dodecyl sulfate capillary electrophoresis (SDS-CE) using a non-gel sieving matrix--have been developed for comparative analysis of low-molecular-mass 2S albumin isoforms from lupins. The albumin fraction and 2S albumins were separated in uncoated fused-silica capillary by CZE with 0.02 M phosphate buffer, pH 7.3, containing the sodium salt of phytic acid. The use of phytic acid (0.025 M) as buffer modifier and ion-pairing agent improved migration reproducibility, peak shape and separation efficiency. The reduced 2S albumins were separated by SDS-CE using a high concentration (0.3-0.5 M) mixture of tris(hydroxymethyl)aminomethane and borate buffers in uncoated fused-silica capillary. Of the various polymers used as non-gel sieving matrix, SDS-CE with a 10% dextran solution was found to be suitable for separation of 2S albumin polypeptides with molecular masses of 4,000-7,000 and 8,000-11,000. The addition of glycerol or ethylene glycol to the SDS separating buffer improved the resolution of polypeptides. The examined Lupinus species showed species-specific CZE and SDS-CE migration profiles of the 2S albumins.  相似文献   

3.
In this work the suitability of micellar electrokinetic capillary chromatography (MEKC) and nonaqueous capillary electrophoresis (CE) to the analysis of the primary oxidation products of linoleic acid was studied with uncoated fused-silica capillaries. The primary autoxidation products of linoleic acid are the four hydroperoxide isomers 13-hydroperoxy-cis-9, trans-11-octadecadienoic acid, 13-hydroperoxy-trans-9, trans-11-octadecadienoic acid, 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid, 9-hydroperoxy-trans-10, trans-12-octadecadienoic acid. Addition of a surfactant such as sodium dodecyl sulfate (SDS) or sodium cholate (SC) into the running buffer (20-30 mM 3-(cyclohexylamino)-1-propanesulfonic acid (CAPS) or ammonium acetate, pH 9.5-11) was required to enhance the water solubility of the sample and selectivity of the separation. MEKC proved to be a promising new technique for the separation of the primary oxidation products of lipids giving results comparable to high performance liquid chromatography (HPLC). Partial separation of hydroperoxide isomers was also achieved using nonaqueous CE with methanol-acetonitrile-sodium cholate as running buffer.  相似文献   

4.
毛细管电泳(capillary electrophoresis,CE)作为一种强有力的手性分离技术,由于操作简单、试剂消耗少及柱效高等优点,受到广泛关注,是近年来手性分离领域的研究热点.氨基酸是组成蛋白质的基本单元,且大多数氨基酸具有手性中心,手性氨基酸是生命体系的一个重要特征.具有手性中心的氨基酸,其对映体间的生物活性往往存在着较大的差异,因此,氨基酸的手性拆分对了解人体及动物生命活动起着举足轻重的作用.主要总结了近5年来毛细管电泳的3种分离模式(毛细管区带电泳、胶束电动毛细管色谱、毛细管电色谱)在氨基酸手性拆分中的发展和应用.  相似文献   

5.
Lee JH  Choi OK  Jung HS  Kim KR  Chung DS 《Electrophoresis》2000,21(5):930-934
An efficient separation of eleven nonprotein amino acids (NPAAs) and three protein amino acids containing aromatic moieties was achieved by capillary electrophoresis without derivatization. The fourteen amino acids were well separated with a 100 mM sodium phosphate run buffer (pH 2.0) using a 57 cm fused-silica capillary (50 microm ID, 50 cm effective length) at 20 degrees C. With an electric field of 351 V/cm, the time needed for the separation was less than 20 min. Under optimum conditions, excellent linear responses were obtained in the concentration range of 5-100 microM, with the linear correlation coefficient ranging from 0.9785 or greater. The relative standard deviations of the migration times and the corrected peak areas were found to be 1.5-3.9% and 8.0-11.5%, respectively. In order to improve the limit of detection (LOD), simple stacking and large volume stacking using an EOF pump (LVSEP) methods were used. Improved LODs were about 300 nM in stacking and below 15 nM for five small NPAAs in LVSEP.  相似文献   

6.
Shi Q  Chen J  Li X  Cao W  Zheng L  Zang J  Wang X 《色谱》2011,29(6):481-487
对毛细管电泳法分离15种核苷类化合物所用的不同缓冲液体系进行了系统比较,确定不同模式毛细管电泳法分析多种核苷类化合物的最适合背景缓冲液体系(BGE)。分别以四硼酸钠、磷酸氢二钠、乙酸钠、碳酸氢钠、乙酸铵和乙二胺(DEA)为背景电解质,对毛细管区带电泳(CZE)、毛细管电泳-电喷雾飞行时间质谱(CE-ESI-TOF/MS)以及胶束电动毛细管电泳(MEKC)3种模式进行比较,并对其中几种优势缓冲体系进行了优化。结果表明,CZE模式下使用四硼酸钠和磷酸氢二钠缓冲体系无法同时分离15种核苷类化合物,因此只适用于分析核苷类化合物数量较少的样品。而使用含有2%丙酮的300 mmol/L DEA能完全分开15种核苷类化合物,且分辨率和峰形良好。MEKC模式下,以25 mmol/L磷酸氢二钠(添加70 mmol/L十二烷基磺酸钠(SDS))为缓冲盐的分离结果最佳,并且此方法能成功应用于海洋生物海葵中核苷类化合物的分离。CE-ESI-TOF/MS分析中,以20 mmol/L乙酸铵(pH 10.0)为背景电解质,正离子模式检测,15种核苷类化合物的质谱信号均良好,检测灵敏度明显优于文献中报道的使用DEA缓冲体系的结果。本研究阐明了不同缓冲体系对15种核苷类化合物分离的适用性,为毛细管电泳技术在复杂基质中多种核苷类化合物的分离方法中的应用奠定了基础。  相似文献   

7.
Sixteen synthetic chemical drugs, often found in adulterated Chinese medicines, were studied by capillary electrophoresis/UV absorbance (CE/UV) and capillary electrophoresis/electrospray ionization mass spectrometry (CE/ESI-MS). Only nine peaks were detected with CZE/UV, but on-line CZE/MS provided clear identification for most compounds. For a real sample of a Chinese medicinal preparation, a few adulterants were identified by their migration times and protonated molecular ions. For coeluting compounds, more reliable identification was achieved by MS/MS in selected reaction monitoring mode. Micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) provided better separation than capillary zone electrophoresis (CZE), and, under optimal conditions, fourteen peaks were detected using UV detection. In ESI, the interference of SDS was less severe in positive ion mode than in negative ion mode. Up to 20 mM SDS could be used in direct coupling of MEKC with ESI-MS if the mass spectrometer was operated in positive ion mode. Because of better resolution in MEKC, adulterants can be identified without the use of MS/MS.  相似文献   

8.
A selective MEKC method was developed for the analysis of didanosine in bulk samples. Successful separation of didanosine from 13 of its potential impurities, derived from the various synthetic preparation procedures, was achieved. As CZE gave poor separation selectivity, MEKC was preferable. The use of EKC allowed achievement of the separation in a significantly shorter time than conventional HPLC. An anionic long-chain surfactant, lithium dodecyl sulfate (LiDS), was used as the pseudostationary phase and sodium tetraborate buffer as the aqueous phase. In order to obtain the optimal conditions and to test the method robustness, a central composite response surface modeling experiment was performed. The optimized electrophoretic conditions include the use of an uncoated fused-silica capillary with a total length of 40 cm and an ID of 50 microm, a BGE containing 40 mM sodium tetraborate and 110 mM LiDS at pH 8.0, an applied voltage of 18.0 kV, and the capillary temperature maintained at 15 degrees C. The method was found to be robust. The parameters for validation such as linearity, precision, and sensitivity are also reported. Three commercial bulk samples were analyzed with this system.  相似文献   

9.
Two capillary electrophoretic methods, a micellar electrokinetic electrophoretic (MEKC) one and a capillary zone electrophoretic (CZE) one, were developed for the separation of 12 constituents in Artemisiae Capillaris Herba. Detection at 254 nm with 20 mM sodium dodecyl sulfate and 20 mM sodium borate buffer (pH 9.82) in MEKC or with 25 mM sodium borate and 6.75 mg/ml 2,3,6-tri-O-methyl-beta-cyclodextrin buffer in CZE was found to be the most suitable approach for this analysis. Within 42 min, the MEKC method could successfully separate 12 authentic constituents, whereof chlorogenic acid, however, appeared as a broad and split peak, and capillarisin and chlorogenic acid overlapped partially with other coexisting substances in crude extract of the herb. The CZE method could completely overcome these problems and was used to determine the amounts of capillarisin, chlorogenic acid, scopoletin and caffeic acid in the extract. The effect of buffers on the constituent separation and the validation of the two methods were discussed.  相似文献   

10.
The major phenolic diterpenes responsible for the antioxidant properties of rosemary extracts, namely carnosol and carnosic acid, were separated by capillary zone electrophoresis (CZE) using a 56 cm long uncoated fused-silica capillary and a 50 mM disodium tetraborate buffer of pH 10.1. The effect of the buffer type, pH and concentration, and the capillary length on the separation, was studied. Carnosol and carnosic acid were identified in the electrophoregrams of rosemary extracts through their migration times and UV spectra obtained by CZE analysis of pure compounds isolated from a rosemary extract by HPLC fractionation. The CZE method had good reproducibility (relative standard deviation less than 5%) and was applied to compare the contents of carnosol and carnosic acid in solid and oil-dispersed commercial extracts of rosemary and in rosemary leaves. The separation of carnosol and carnosic acid was accomplished in less than 11 min.  相似文献   

11.
To obtain reproducible migration times and rapid analyses of analytes, sulfonate groups were chemically introduced to the inner wall of untreated fused-silica capillary with 2-(4-chlorosulfonylphenyl)ethyltrichlorosilane. The sulfonated capillary showed relatively constant electroosmotic mobility which was greater than that obtained by an untreated fused-silica capillary over the pH range studied (pH 2-9). In both CZE and MEKC, the RSDs of the migration times of analytes with the sulfonated capillary were less than 0.2% which were significantly lower than those obtained with an untreated fused-silica capillary (0.5-3.5%). When BGE were set at pH 7.0 for CZE and MEKC, the analysis times with the sulfonated capillary were about half those obtained with an untreated fused-silica capillary. These results indicate that the sulfonated capillary can provide highly reproducible and rapid analyses in CE.  相似文献   

12.
Schistosoma mansoni infection in mice has been fingerprinted using CE to study the capabilities of this technique as a diagnostic tool for this parasitic disease. Two modes of separation were used in generating the electrophoretic data, with each untreated urine sample the following methods were applied: (i) a fused-silica capillary, operating with an applied potential of 18 kV, in micellar EKC (MEKC) and (ii) a polyacrylamide-coated capillary, operating with an applied potential of -20 kV under zonal CZE conditions. By combining normal and reverse polarities in the data treatment we have extracted more information from the samples, which is a better approach for CE metabolomics. The traditional problems associated with variability in electrophoretic peak migration times for analytes were countered by using a dynamic programming algorithm for the electropherograms alignment. Principal component analyses of these aligned electropherograms and partial least square discriminant analysis (PLS-DA) data are shown to provide a valuable means of rapid and sample classification. This approach may become an important tool for the identification of biomarkers, diagnosis and disease surveillance.  相似文献   

13.
Yan Y  Yu J  Jiang Y  Hu Y  Cai M  Hsam SL  Zeller FJ 《Electrophoresis》2003,24(9):1429-1436
This study focused on optimizing phosphate-based buffers and other capillary electrophoresis (CE) parameters for separating and characterizing high molecular weight glutenin subunits (HMW-GS) in bread wheat (Triticum aestivum L., AABBDD, 2n = 6x = 42), emmer (Triticum dicoccum, AABB, 2n = 4x = 28) and Aegilops tauschii (DD, 2n = 2x = 14). The fast and high-resolution separation of HMW-GS was achieved using 0.1 M phosphate-glycine buffer (pH 2.5, containing 20% acetonitrile and 0.05% hydroxypropylmethylcellulose) at 12.5 kV and 40 degrees C with 25 microm inside diameter (ID)x27 cm uncoated fused-silica capillary. In general, one sample separation can be analyzed in 15 min. The good run-to-run repeatable separation of HMW-GS could be obtained with a relative standard deviation of less than 1% when capillaries were rinsed with 1 M phosphoric acid for 2 min, followed by separation buffer for 2 min after each separation. The HMW-GS from some bread wheat cultivars as well as tetraploid and diploid accessions was separated by the CE method described above, and all subunits detected were well characterized and readily identified. Some HMW-GS showed reversed mobilities and elution order compared to the methods of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and SDS-CE. Particularly, most of the HMW-GS analyzed with the CE buffer used were separated into multiple peaks, generally a high peak plus a minor peak. CE appears to be capable of separating and characterizing HMW-GS with fast and high-resolution features, therefore it is expected to be useful for specific germplasm screening and desirable HMW-GS identification in wheat quality improvement.  相似文献   

14.
The separation of 17 “common” underivatized amino acids was attempted by open tubular capillary electrochromatography (OT-CEC) in fused-silica capillaries coated with Rh(III) tetrakis(phenoxyphenyl)porphyrinate (Rh(III)TPP(m-OPh)4OAc) using sodium phosphate and Tris–phosphate buffers as background electrolytes (BGEs). The OT-CEC separation of amino acids was compared with that obtained by capillary zone electrophoresis in bare fused-silica capillaries using the same BGEs. The amino acids were not derivatized and the UV-absorption detection was set at 200 nm. Depending on the experimental conditions at least 15 amino acids were separated. The best separations were obtained in a Rh(III)TPP(m-OPh)4OAc-coated capillary in 50 mM Tris–100 mM phosphate buffer at pH 2.25. Separation of the critical triplet Val–Ile–Leu was always at least indicated being better at higher BGE concentrations. Regarding the sensitivity of the method, lower concentration limits of detection (LODs) in the coated capillary were obtained for Thr, Gly, Tyr, and Val; the other amino acids exhibited lower LODs in the uncoated capillary. The separation of acidic amino acids was not achieved.  相似文献   

15.
A fused-silica capillary that is wall-modified via chemically bonding a sulfonated polymer to the capillary wall has a uniform negative charge density on its surface and produces an electroosmotic flow (EOF) greater than 4 x 10(-4) cm2 V(-1) s(-1) The EOF is nearly independent of buffer pH over the pH range of 2 to 10 and is lower than the EOF obtained for the bare fused-silica capillary at the more basic pH but is higher at the more acidic buffer pH. Optimization of buffer pH can be based on analyte pKa values to improve the overall quality of the capillary zone electrophoresis (CZE) separation of complex mixtures of weak acid and base analytes. Because of the high EOF in an acidic buffer, the capillary is useful for the separation of weak organic bases which are in their cation forms in the acidic buffer. EOF for the sulfonic acid bonded phase capillary can be adjusted via buffer additives such as organic solvent, tetraalkylammonium salts, multivalent cations and alkylsulfonic acids. The advantages of utilizing buffer pH and the EOF buffer modifiers to enhance migration time, selectivity, and resolution in CZE separations with this capillary are illustrated using a series of test analyte mixtures of inorganic anions, carboxylic acids, alkylsulfonic acids, benzenesulfonic acids, sulfas, pyridines, anilines or small-chain peptides.  相似文献   

16.
We have made a rigorous assessment of the ability of capillary electrophoresis to resolve peptide diastereomers through its application to the separation of a series of synthetic 18-residue, amphipathic alpha-helical monomeric peptide analogues, where a single site in the centre of the hydrophobic face of the alpha-helix is substituted by 19 L- or D-amino acids. Such L- and D-peptide pairs have the same mass-to-charge ratio, amino acid sequence and intrinsic hydrophobicity, varying only in the stereochemistry of one residue. CE approaches assessed in their ability to separate diastereomeric peptide pairs included capillary zone electrophoresis (uncoated capillary), micellar electrokinetic chromatography (uncoated capillary in the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, CHAPS), open-tubular capillary electrochromatography (C(8)-coated capillary in the presence of 25% 2,2,2-trifluoroethanol (TFE) or 25% ethanol). Overall, the OT-CEC methods were the most effective at separating the most peptide pairs, particularly for those containing hydrophilic side chains. However, the MEKC approach proved most effective for separation of peptide pairs containing hydrophobic or aromatic side chains.  相似文献   

17.
The capillary electrophoretic (CE) separation of the enantiomers of three binaphthyl compounds is investigated. Several CE modes such as cyclodextrin (CD) modified capillary zone electrophoresis (CZE) (CD-CZE), micellar electrokinetic chromatography (MEKC), cyclodextrin electrokinetic chromatography (CD-EKC), etc. are employed for the simultaneous enantiomer separation of the three solutes. The successful separation was achieved by combining two modes, in other words by using more than two chiral selectors. A development of the CE enantiomer separation is demonstrated for the binaphthyl compounds. The enantioselectivity of binaphthyl compounds is alo briefly discussed.  相似文献   

18.
Issue no. 2 is a regular issue assembled of 16 solid and original research articles distributed over 3 distinct parts. Part I is on novel trends in fundamentals and methodologies including theoretical models for selectivity of charged solutes in MEKC, system peaks in indirect detection, measuring epimerization constants by MEEKC, bundled CE using micro‐structured fibers, 2‐D separations by coupling CIEF and CEC, high speed DNA CE, MCE of N‐glycans and mucin expression in a microfluidic gradient device. Part II is concerned with detection, sensitivity enhancement, on‐column preconcentration and microdialysis sampling involving the design of continuous full filling CEC‐ESI‐MS using nanoparticles, CE‐fluorescence using tapered optical fiber, CZE separation of pesticide residues in water samples with acid‐assisted on‐column preconcentration and CE‐LIF to detect neurotransmitter amino acids and carbamathione in brain microdialysis samples. Novel methods for the separation and profiling of various proteins and large nucleic fragments are described in 4 consecutive papers grouped in part III. Featured articles include: Theoretical models of separation selectivity for charged compounds in micellar electrokinetic chromatography (( 10.1002/elps.201000405 )) Bundled capillary electrophoresis using microstructured fibres ( 10.1002/elps.201000442 )) Two‐dimensional separation system by on‐line hyphenation of capillary isoelectric focusing with pressurized capillary electrochromatography for peptide and protein mapping ( 10.1002/elps.201000419 )) Microchip electrophoresis of N‐glycans on serpentine separation channels with asymmetrically tapered turns ( 10.1002/elps.201000461 ))  相似文献   

19.
Optimum conditions for the separation of positional isomers of chlorophenols by capillary zone electrophoresis (CZE) were established. The behavior of five volatile electrolytes (L-cysteic acid, 3-amino-1-propanesulfonic acid, aminomethanesulfonic acid, diethylmalonic acid, and ammonium acetate) was compared. The best performance based on low electrophoretic current and high separation efficiency was obtained for diethylmalonic acid as working electrolyte. The influence of pH on the separation, using both uncoated fused-silica capillaries and modified capillaries (NaAMPS from EKT) with anionic coating, was discussed. Moreover, the effect of electrolyte concentration and applied voltage using fused-silica capillaries was studied. The optimum CZE conditions that allowed the separation of 16 chlorophenols were 20 kV, 30 mM diethylmaIonic acid, pH 7.25, and uncoated fused-silica capillary. Figures of merit such as run-to-run and day-to-day precision, linearity, and limits of detection were calculated.  相似文献   

20.
Numerous efforts have been made to separate proteins by capillary zone electrophoresis (CZE). The most common optimization techniques are changing the pH of the running buffer, coating the capillary surface with a hydrophilic polymer, or using additives in the sample solution. Surface coatings and solution additives can reduce the adsorption of the protein onto the capillary surface, but they diminish the separation efficiency and the resolution of CZE. This paper reports the successful separation of proteins in a untreated fused-silica capillary by raising the pH of the running buffer and washing between runs with 1.0 M sodium hydroxide. Under these conditions, model proteins and proteins in human serum have been determined by CZE. It is shown that the results from CZE are compatible with those of sodium dodecyl sulphate-polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号