首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
Herein we report on the synthesis and acid‐responsive emission properties of donor–acceptor (D–A) molecules that contain a thienothiophene unit. 2‐Arylthieno[3,2‐b]thiophenes were conjugated with an N‐methylbenzimidazole unit to form acid‐responsive D–A‐type fluorophores. The D–A‐conjugated fluorophores showed intense intramolecular charge‐transfer (ICT) emission in response to acid. The effect of the substitution on their photophysical properties as well as their solvent‐dependence indicated non‐twisting ICT emission in protonated D–A molecules. The quinoidal character of 2‐arylthienothiophene as a donor part is discussed, as it is assumed that it contributes to suppression of the molecular twisting in the excited state, therefore decreasing the nonradiative rate constant, thereby resulting in the intense ICT emission. Acid–base‐sensitive triple‐color emission was also achieved by the introduction of a base‐responsive phenol group in the donor part.  相似文献   

2.
以室温离子液体1-丁基-3-甲基咪唑六氟磷酸盐[BMIM]PF6为溶剂及支持电解质,通过电化学方法制备聚(3-己基噻吩)(PHexT)膜。采用循环伏安法和扫描电子显微镜,对膜的电化学性质及形貌结构进行表征。同时通过紫外可见光谱、计时电流、计时库仑以及计时吸收曲线等方法研究聚合物膜的光谱电化学和电致变色特性,并在此基础上制备PHexT膜的电致变色器件。实验结果表明,在离子液体中制备的PHexT膜光滑致密,掺杂态时为蓝色,脱掺杂时为桔红色,并且具有高的颜色对比度 (40%),较短的响应时间 (2.5 s) 和高的电致变色着色效率 (230cm2/C),该膜制成的固态电致变色器件具有很好的电致变色性能和长的循环寿命。  相似文献   

3.
A series of photochromic derivatives based on the trans‐10b,10c‐dimethyl‐10b,10c‐dihydropyrene (DHP, “closed form”) skeleton has been synthesized and their photoisomerization leading to the corresponding cyclophanediene (CPD, “open form”) isomers has been investigated by UV/Vis and 1H NMR spectroscopies. Substitution of the DHP core with electron‐withdrawing pyridinium groups was found to have major effects on the photoisomerization efficiency, the most remarkable examples being to enhance the quantum yield of the opening reaction and to allow fast and quantitative conversions at much lower radiant energies. This effect was rationalized by theoretical calculations. We also show that the reverse reaction, that is, going from the open form to the closed form, can be electrochemically triggered by oxidation of the CPD unit and that the photo‐opening properties of pyridine‐substituted DHPs can be efficiently tuned by protonation, the system behaving as a multi‐addressable molecular switch. These multi‐addressable photochromes show promise for the development of responsive materials.  相似文献   

4.
A luminescent cocrystal system is reported to undergo crystal‐to‐crystal phase transformation from yellow‐emitting polymorph I to green‐emitting polymorph II, triggered by THF fuming or heating, and the green emission can recover to the initial yellow emission by grinding. The established spectroscopic and crystallographic analyses demonstrate that the phase transition occurred and benefits from the combined effect of similar molecular arrange sequence and unique alteration of intermolecular interactions from halogen/hydrogen bonds in I to π–π stacking in II. Furthermore, I and II exhibit red‐shift emission under hydrostatic pressure. The emission of I and II shows a red‐shift and recovers towards the initial emission upon acid–base fuming. This is a rare example of reversible luminescent switching of cocrystal based upon crystal‐to‐crystal phase transition, and provides an alternative strategy to develop multi‐stimuli responsive materials.  相似文献   

5.
A high contrast tri‐state fluorescent switch (FSPTPE) with both emission color change and on/off switching is achieved in a single molecular system by fusing the aggregation‐induced emissive tetraphenylethene (TPE) with a molecular switch of spiropyran (SP). In contrast to most of the reported solid‐state fluorescent switches, FSPTPE only exists in the amorphous phase in the ring‐closed form owing to its highly asymmetric molecular geometry and weak intermolecular interactions, which leads to its grinding‐inert stable cyan emission in the solid state. Such an amorphous phase facilitates the fast response of FSPTPE to acidic gases and induces the structural transition from the ring‐closed form to ring‐open form, accompanied with the “Off” state of the fluorescence. The structural transition leads to a planar molecular conformation and high dipole moment, which further results in strong intermolecular interactions and good crystallinity, so when the acid is added together with a solvent, both the ring‐opening reaction and re‐crystallization can be triggered to result in an orange emissive state. The reversible control between any two of the three states (cyan/orange/dark) can be achieved with acid/base or mechanical force/solvent treatment. Because of the stable initial state and high color contrast (Δλ=120 nm for cyan/orange switch, dark state ΦF<0.01 %), the fluorescent switch is very promising for applications such as displays, chemical or mechanical sensing, and anti‐counterfeiting.  相似文献   

6.
A N‐2‐phenylethyl‐substituted 1,4‐dihydropyridine derivative (NDHP) containing 5,5‐dimethylcyclohexane‐1,3‐dione and naphthylethylene was designed and synthesized. NDHP acts as a multifunctional fluorescent sensor in dual phases. The crystal structure analysis confirms that the NDHP molecules have highly twisted conformations. The twisted conformation results in aggregation‐induced emission properties and solid‐state emission, by restricting the intramolecular free rotation in the aggregated or solid state. In the solid state, NDHP exhibits reversible mechanochromic properties as a result of the transition between the amorphous and crystalline states. NDHP also exhibits a rare phenomenon of acid‐fumed solid‐state emission enhancement owing to the change in packing mode from a zigzag arrangement to J‐aggregation. The solid‐state stimuli‐responsive fluorescence switching is applied to realize a rewritable optical recording media and a multiple output combinational logic system. In solution, NDHP shows a selective fluorescence response for environmentally harmful Hg2+, with a limit of detection of 2.7 nm . This results from the “turn‐on” responsive behavior owing to the Hg2+‐triggered aggregation of the NDHP molecules. NDHP is also used in the imaging of intracellular Hg2+ in HeLa cells. These findings provide a feasible and attractive route for developing multifunctional fluorescent sensors for use in dual phases.  相似文献   

7.
A new near‐infrared switchable electrochromic polymer containing carbazole pendant (poly‐SNSC), synthesized by electrochemical polymerization of 2,5‐bis‐dithienyl‐1H‐pyrrole (SNS) main chain, has been prepared. The electrochemical and optical properties of SNSC monomer and its polymer have been investigated. Because of having two different electro‐donor moieties; that is, carbazole and SNS, SNSC gave two separate electrochemical oxidation and also light brown color of the film in the neutral state turn into gray on oxidation. An electrochromic device, contructed in the sandwich configuration [indium tin oxide (ITO)‐coated glass/anodically coloring polymer (poly‐SNSC)//gel electrolyte//cathodically coloring polymer (PEDOT)/ITO‐coated glass] and exhibited a high coloration efficiency (1216 cm2 C–1), a very short response time (about 0.3 s), low driving voltage, and a high redox stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
The azobenzene‐based amphiphilic copolymers have drawn significant attention as a kind of multi‐responsive smart materials. The demand on deeper investigation of how the azobenzene group influences the micelles formation and light‐responsive behavior on molecular level is very urgent. In this article, multi‐responsive block copolymers, poly (acrylic acid)‐block‐poly[4'‐[[(2‐Methacryloyloxy)ethyl]ethylainino]azobenzene‐co‐poly (ethylene glycol) methyl ether methacrylate] (PAA‐b‐P (AzoMA‐co‐PEGMA)), with pH‐, light‐ and reduction‐responsiveness were synthesized by the monomers of AzoMA, PEGMA and acrylic acid via reversible addition‐fragmentation chain transfer polymerization (RAFT). The amphiphilic block copolymer presented aggregation‐induced emission effect, and it was pH, light, and reduction responsive. The results showed that the micelle size decreased with the decreasing of pH within a certain range. However, the particle size of micelles increased significantly when the pH was 4. Once adding reduction agent, the micelles were disassembly. Fluorescent molecule of Nile red was selected as a hydrophobic guest molecule to study the properties of encapsulating and releasing abilities of block copolymer micelles for guest molecules. The results showed that the loading capacity of three kinds of copolymer micelles was closely related to the aggregates formed by the hydrophobic block, mainly azobenzene block. Besides, the block copolymer micelles could release a certain amount of Nile red under the irradiation of UV light, the reduction with Na2S2O4 as reductant, and the exposure to alkaline environment. The mechanism of how the different status of azobenzene group influenced the self‐assembly and multi‐responsive behavior was explored on molecular level.  相似文献   

9.
A novel electroactive spirocyclododecylfluorene monomer named 2,7‐bis(carbazol‐9‐yl)‐9,9′‐spiro[cyclododecane‐1,9′‐fluorene] (SFC) was synthesized and electrochemically polymerized to give a very stable multi‐electrochromic polymer (poly‐SFC). Two separate oxidation processes were observed for both SFC monomer and poly‐SFC that carries two carbazole units. The polymeric film of poly‐SFC was coated onto ITO/glass surface, and it shows different colors (transparent, yellowish green, green, and dark green) upon stepwise oxidations. An electrochromic device based on poly‐SFC was assembled in the sandwich cell configuration of ITO/poly‐SFC//gel electrolyte//PEDOT/ITO. Poly‐SFC exhibits 90% of transparency at neutral state and a high contrast ratio (ΔT = 58% at 800 nm). This device constructed from it represents a response time of about 1 s, high coloration efficiency (1377 cm2 C–1) and retained its performance by 96.4% even after 1000 cycles. Exhibiting high transparency at neutral state, reversible redox behavior, resistance to overoxidation, and especially high contrast ratio at near IR region can make poly‐SFC be useful and promising candidate for electrochromic applications despite having a relatively slow response time. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

10.
A highly methanol‐selective vapochromic response has been realized in a NiII‐quinonoid complex, [Ni(HLMe)2] (H2LMe=4‐methylamino‐6‐methyliminio‐3‐oxocyclohexa‐1,4‐dien‐1‐olate) which exhibits a reversible structural transformation including a coordination geometrical change between the square‐planar and octahedral structure by the selective uptake of methanol vapor. This was accompanied by a remarkable color change between purple and orange, as well as temperature‐robust spin‐state switching in the solid state under ambient conditions. It is remarkable that the properties are derived by the fine structural modification of the quinonoid ligand such as methyl or ethyl analogues. Such a system has high potential for applications in memory devices as well as chemical sensors and smart responsive materials.  相似文献   

11.
Disclosed here is a molecular switch which responds to acid‐base stimuli and serves as a bi‐state catalyst for two different reactions. The two states of the switch serve as a highly active and poorly active catalyst for two catalytic reactions (namely a hydrogenation and a dehydrogenative coupling) but in a complementary manner. The system was used in an assisted tandem catalysis set‐up involving dehydrogenative coupling of an amine and then hydrogenation of the resulting imine product by switching between the respective states of the catalyst.  相似文献   

12.
A multiresponsive enamine‐based molecular switch is presented, in which forward/backward configurational rotation around the C=C bond could be precisely controlled by the addition of an acid/base or metal ions. Fluorescence turn‐on/off effects and large Stokes shifts were observed while regulating the switching process with CuII. The enamine functionality furthermore enabled double dynamic regimes, in which configurational switching could operate in conjunction with constitutional enamine exchange of the rotor part. This behavior was used to construct a prototypical dynamic covalent switch system through enamine exchange with primary amines. The dynamic exchange process could be readily turned on/off by regulating the switch status with pH.  相似文献   

13.
An electrochromic system based on a self‐assembled dipeptide‐appended redox‐active quinquethiophene π‐gel is reported. The designed peptide‐quinquethiophene consists of a symmetric bolaamphiphile that has two segments: a redox‐active π‐conjugated quinquethiophene core for electrochromism, and peptide motif for the involvement of molecular self‐assembly. Investigations reveal that self‐assembly and electrochromic properties of the π‐gel are strongly dependent on the relative orientation of peptidic and quinquethiophene scaffolds in the self‐assembly system. The colors of the π‐gel film are very stable with fast and controlled switching speed at room temperature.  相似文献   

14.
Small‐molecule regulation is a powerful switching tool to manipulate cell signal transduction for a desired function; however, most available methods usually require genetic engineering to endow cells with responsiveness to user‐defined small molecules. Herein, we demonstrate a nongenetic approach for small‐molecule‐controlled receptor activation and consequent cell behavior manipulation that is based on DNA‐mediated chemically induced dimerization (D‐CID). D‐CID uses a programmable chemical‐responsive DNA nanodevice to trigger DNA strand displacement and induce the activation of c‐Met, a tyrosine kinase receptor cognate for hepatocyte growth factor, through dimerization. Through the use of various functional nucleic acids, including aptamers and DNAzymes, as recognition modules, the versatility of D‐CID in inducing c‐Met signaling upon addition of various small‐molecular or ionic cues, including ATP, histidine, and Zn2+, is demonstrated. Moreover, owing its multi‐input properties, D‐CID can be used to manipulate the behaviors of multiple cell populations simultaneously in a selective and programmable fashion.  相似文献   

15.
The unique optical properties of free‐base meso‐tris(5‐methylthien‐2‐yl)corrole were compared to those of the widely investigated meso‐triphenyl‐substituted analogue. A combination of spectroscopic and computational experiments was undertaken to elucidate the relationship between structural features of the neutral, mono‐anionic and mono‐cationic forms of the corroles and their corresponding optical properties. A general bathochromic shift was measured for the thienyl‐substituted corrole. The experimental spectra are supported by excited state calculations. A systematic series of ground state minimizations were performed to determine energy minima for the flexible and solvent‐sensitive molecules. Trithienylcorrole was found to have a more nonplanar macrocycle in conjunction with a high degree of π‐overlap with the meso‐substituents. Both structural features contribute to their bathochromically shifted optical spectra. The configurational character of the thienyl‐substituted corrole is shown to have a larger degree of molecular orbital mixing and doubly excited character, which suggest a more complex electronic structure that does not fully adhere to the Gouterman four‐orbital model. The reactivity of the thienyl groups, particularly with respect to their ability to be (electro)‐polymerized, combined with the tight coupling of the meso‐thienyl groups with the corrole chromophore elucidated in this work, recommends the meso‐thienylcorroles as building blocks in, for instance, organic semiconductor devices.  相似文献   

16.
Electrochromic devices are fabricated by using polyaniline (PANI) doped with poly(styrene sulfonic acid) (PSS) as coloring electrodes, poly(ethylenedioxythiophene)‐poly(styrene sulfonic acid) (PEDOT‐PSS) as complementary electrodes, and hybrid polymer electrolytes as gel electrolytes. The device based on LiClO4‐based electrolyte (weight ratio of PMMA:PC:LiClO4 = 0.7:1.1:0.3) shows the highest optical contrast and coloration efficiency (333 cm2/C) after 1200 cycles in these devices, and the color changes from pale yellow (?0.5 V) to dark blue (+2.5 V). The spectroelectrochemical and electrochromic switching properties of electrochromic devices are investigated, the maximum optical contrast (ΔT%) of electrochromic device for ITO|PANI‐PSS‖PMMA‐PC‐LiClO4‐SiO2‖PEDOT‐PSS|ITO are 31.5% at 640 nm, and electrochromic device based on LiClO4‐based electrolyte with SiO2 shows faster response time than that based on LiClO4‐based electrolyte without SiO2.  相似文献   

17.
Adding colloidal nanoparticles into liquid‐crystal media has become a promising pathway either to enhance or to introduce novel properties for improved device performance. Here we designed and synthesized new colloidal hybrid silica nanoparticles passivated with a mesogenic monolayer on the surface to facilitate their organo‐solubility and compatibility in a liquid‐crystal host. The resulting nanoparticles were identified by 1H NMR spectroscopy, TEM, TGA, and UV/Vis techniques, and the hybrid nanoparticles were doped into a dual‐frequency cholesteric liquid‐crystal host to appraise both their compatibility with the host and the effect of the doping concentration on their electro‐optical properties. Interestingly, the silica‐nanoparticle‐doped liquid‐crystalline nanocomposites were found to be able to dynamically self‐organize into a helical configuration and exhibit multi‐stability, that is, homeotropic (transparent), focal conic (opaque), and planar states (partially transparent), depending on the frequency applied at sustained low voltage. Significantly, a higher contrast ratio between the transparent state and scattering state was accomplished in the nanoparticle‐embedded liquid‐crystal systems.  相似文献   

18.
In this study, spectroelectrochemical (SPE) studies to monitor the electrochromic properties of electrochemically synthesized sub‐10 nm sized Prussian blue (PB) nanostructures (NSs) are employed. At the beginning the dark blue coloured device, shifts reversibly between translucent and dark‐blue while applying an applied bias between +1 to ?1 V with an opposite polarization. Amine functionalized silicate sol‐gel matrix (SSG) is used as a solid support and stabilizer for electrodepositing highly uniform sub‐10 nm PB NSs. The SSG's film thickness is suitably optimized through suitable controlled experiments. It is found that the SPE behaviour of sub‐10 nm sized PB NSs, suitably followed a colour modulation of PB into Prussian white (PW) and vice‐versa. SPE studies are used to investigate the redox switching between the PB and PW and which are responsible for an electrochromic function of a fabricated electrochromic device (ECD). Fabricated ECD has demonstrated an optical modulation at 680 nm with the moderate coloration efficiency of 115.8 cm2/C. Present study validates the SPE feature of sub‐10 nm PB NSs as an active electrochromic nanomaterial and demonstrating the applicability of SPE technique to investigate the variety of electrochromic nanomaterials, with consequences in both spectral and electrochemically active nanomaterials for electrochromic device applications.  相似文献   

19.
Light‐induced spin‐state switching is one of the most attractive properties of spin‐crossover materials. In bulk, low‐spin (LS) to high‐spin (HS) conversion via the light‐induced excited spin‐state trapping (LIESST) effect may be achieved with a visible light, while the HS‐to‐LS one (reverse‐LIESST) requires an excitation in the near‐infrared range. Now, it is shown that those phenomena are strongly modified at the interface with a metal. Indeed, an anomalous spin conversion is presented from HS state to LS state under blue light illumination for FeII spin‐crossover molecules that are in direct contact with metallic (111) single‐crystal surfaces (copper, silver, and gold). To interpret this anomalous spin‐state switching, a new mechanism is proposed for the spin conversion based on the light absorption by the substrate that can generate low energy valence photoelectrons promoting molecular vibrational excitations and subsequent spin‐state switching at the molecule–metal interface.  相似文献   

20.
Two ester derivatives featuring anthraquinone as an interior core and terminal electroactive triphenylamine or carbazole groups were prepared by the condensation of 2,6‐dihydroxyanthraquinone with 4‐(diphenylamino)benzoyl chloride and 4‐(9H‐carbazol‐9‐yl)benzoyl chloride, respectively. The electrochemistry and electropolymerization of these monomers were investigated. The polymeric films were built onto ITO/glass surface by repetitive cyclic voltammetry scanning of the monomer solutions containing an electrolyte. The electrogenerated polymer films exhibited reversible electrochemical processes and strong color changes upon electro‐oxidation or electro‐reduction, which can be switched by potential modulation. The remarkable electrochromic behavior of the film was clearly interpreted on the basis of spectroelectrochemical studies, and the electrochromic stability was evaluated by the electrochromic switching studies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 644–655  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号