首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple method for the functionalization of closo‐borates [closo‐B10H10]2? ( 1 ), [closo‐1‐CB9H10]? ( 2 ), [closo‐B12H12]2? ( 3 ), [closo‐1‐CB11H12]? ( 4 ), and [3,3′‐Co(1,2‐C2B9H11)2]? ( 5 ) is described. Treatment of the anions and their derivatives with ArI(OAc)2 gave aryliodonium zwitterions, which were sufficiently stable for chromatographic purification. The reactions of these zwitterions with nucleophiles provided facile access to pyridinium, sulfonium, thiol, carbonitrile, acetoxy, and amino derivatives. The synthetic results are augmented by mechanistic considerations.  相似文献   

2.
Using density functional theory and a hybrid exchange‐correlation functional, a systematic study of the stability and electronic structure of neutral and multiply charged organic molecules, BnC6?nX6 (n=0, 1, 2; X=H, F, CN) and BnC5?nX5 (n=0, 1; X=H, F, CN) is performed. The results show that in addition to the aromaticity of the molecules, substituents play an important role in stabilizing the organic dianion complexes. In particular, it is demonstrated that CN groups are responsible for the stability of organic dianions as it has recently been found to be the case in B‐cage compounds such as B12(CN)122? and CB11(CN)122?. It is also shown that the stable organic dianions B2C4(CN)62? and BC4(CN)52? might be halogen‐free electrolytes in Li‐ion batteries.  相似文献   

3.
Super‐ and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to the chemical industry as oxidizing agents, biocatalysts, and building blocks of salts. Using the well‐known Wade–Mingos rule for describing the stability of closo‐boranes BnHn2? and state‐of‐the‐art theoretical methods, we show that a new class of super‐ and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens, in which a central metal atom is surrounded by halogen atoms, the superhalogens formed according to the Wade–Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, a single borane‐like moiety is sufficient to give M(B12H12) clusters (M=Li, Na, K, Rb, Cs) superhalogen properties. In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. Examples include M(B12H13)2 and M(CB11H12)2 (M=Li–Cs). This finding opens the door to an untapped source of superhalogens and weakly coordinating anions with potential applications.  相似文献   

4.
Carba‐closo‐dodecaborate anions with two functional groups have been synthesized via a simple two‐step procedure starting from monoamino‐functionalized {closo‐1‐CB11} clusters. Iodination at the antipodal boron atom provided access to [1‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 1 a ) and [2‐H2N‐12‐I‐closo‐1‐CB11H10]? ( 2 a ), which have been transformed into the anions [1‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 1 b ), Ph ( 1 c ), Et3Si ( 1 d )) and [2‐H2N‐12‐RC?C‐closo‐1‐CB11H10]? (R=H ( 2 b ), Ph ( 2 c ), Et3Si ( 2 d )) by microwave‐assisted Kumada‐type cross‐coupling reactions. The syntheses of the inner salts 1‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 1 e ), Et3Si ( 1 f )) and 2‐Me3N‐12‐RC?C‐closo‐1‐CB11H10 (R=H ( 2 e ), Et3Si ( 2 f )) are the first examples for a further derivatization of the new anions. All {closo‐1‐CB11} clusters have been characterized by multinuclear NMR and vibrational spectroscopy as well as by mass spectrometry. The crystal structures of Cs 1 a , [Et4N] 2 a , K 1 b , [Et4N] 1 c , [Et4N] 2 c , 1 e , and [Et4N][1‐H2N‐2‐F‐12‐I‐closo‐1‐CB11H9]?0.5 H2O ([Et4N ]4 a ?0.5 H2O) have been determined. Experimental spectroscopic data and especially spectroscopic data and bond properties derived from DFT calculations provide some information on the importance of inductive and resonance‐type effects for the transfer of electronic effects through the {closo‐1‐CB11} cage.  相似文献   

5.
在研究RuCl2(PPh3)3 和 closo-B10H102- 在乙醇中的反应时,意外分离得到一个阴离子型的钌硼烷化合物[Et4N][(PPh3)2ClRuB12H12], 并且经过红外光谱和单晶X射线衍射分析确证. 在其结构中,闭式B12H122-配体与Ru(II)中心通过三个B-H-Ru三中心-二电子键结合. 分析原因应是在通过文献方法制备闭式B10H102-时的少量副产物闭式B12H122-在反应体系中与RuCl2(PPh3)3反应而生成了标题化合物. 根据硼烷簇合物的电子计数规则, 标题化合物也可以看成是含有2n (n为簇顶点数)个骨架电子的pileo型簇合物, 具有加帽(capped)的闭式多面体骨架构型. 这是第一个阴离子型的含有闭式B12H122- 的钌化合物.  相似文献   

6.
DFT calculations are used to calculate the binding energies of the second electron of the closo‐borane B12H122‐ and B12(CN)122‐.  相似文献   

7.
Electrospray ionization (ESI) of tryptophan gives rise to multiply charged, non‐covalent tryptophan cluster anions, [Trpn–xH]x?, in a linear ion trap mass spectrometer, as confirmed by high‐resolution experiments performed on a Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometer. The smallest multiply charged clusters that can be formed in the linear ion trap as a function of charge state are: x = 2, n = 7; x = 3, n = 16; x = 4, n = 31. The fragmentation of the dianionic cluster [Trp9–2H]2? was examined via low‐energy collision‐induced dissociation (CID), ultraviolet photodissociation (UVPD) at 266 nm and electron‐induced dissociation (EID) at electron energies ranging from >0 to 30 eV. CID proceeds mostly via charge separation and evaporation of neutral tryptophan. The smallest doubly charged cluster that can be formed via evaporation of neutral tryptophans is [Trp7–2H]2?, consistent with the observation of this cluster in the ESI mass spectrum. UVPD gives singly charged tryptophan clusters ranging from n = 2 to n = 9. The latter ion arises from ejection of an electron to give the radical anion cluster, [Trp9–2H]?.. The types of gas‐phase EID reactions observed are dependent on the energy of the electrons. Loss of neutral tryptophan is an important channel at lower energies, with the smallest doubly charged ion, [Trp7–2H]2?, being observed at 19.8 eV. Coulomb explosion starts to occur at 19.8 eV to form the singly charged cluster ions [Trpx–H]? (x = 1–8) via highly asymmetric fission. At 21.8 eV a small amount of [Trp2–H–NH3]? is observed. Thus CID, UVPD and EID are complementary techniques for the study of the fragmentation reactions of cluster ions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A novel series of boronated porphyrins for potential use in boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) for tumor suppression is described. Protoporphyrin IX {i.e., bis(α‐methyl‐β‐pentylethylether)protoporphyrin IX, and bis(α‐methyl‐β‐dodecanylethylether)protoporphyrin IX} bearing polyhedral borane anions (B12H11SH2?, B12H11NH3?, or B12H11OH2?) were synthesized with reasonable yields. Modification of the protoporphyrin IX structure was achieved by variation of the lengths of the alkyl chains (pentyl and dodecanyl) attached through ether linkages to the former vinyl groups. The goal of this modification was to develop boronated porphyrins with chemical and physical properties that differed from those of protoporphyrin IX. Performance of an MTT assay with each derivative revealed that the synthesized boronated porphyrins showed low cytotoxicities in a variety of cancer cells. Of these compounds, B12H11NH22?‐conjugated porphyrin induced a significant increase in the level of boron accumulation and PDT efficacy against HeLa cells.  相似文献   

9.
Transition states of elementary reactions of H2 molecule elimination from [B n H n + 1]? anions (n = 6–9, 11) in which nucleophilic/electrophilic vacancies form at boron atoms have been localized by the density functional theory method (in the B3LYP/6-311++G** approximation). For a series of [B n H n + 1]? anions (n = 6–12), the activation barriers to H2 elimination have been compared to consider the possibility of substitution for exopolyhedral hydrogen atoms by the mechanism with the first rate-limiting stage of formation of [B n H n ? 1]? (n = 6–12) intermediates with a vacant “bare” vertex of the boron cluster. For the [B n H n ]2?, [B n H n + 1]?, and [B n H n ? 1]? anions (n = 6–12), the electronic chemical potential μ and Pearson hardness η have been evaluated since these characteristics make it possible to assess the propensity of different reagents to react with each other in terms of the empirical HSAB principle (soft with soft and hard with hard). The application of this principle is exemplified by the interaction of the [B10H9]? and [B12H11]? anions with acetonitrile CH3CN, furan C4H4O, and 18-crown-6.  相似文献   

10.
The behavior of the [B12H12]2– anion in CH3CN, CF3COOH, and the CH3CN/CF3COOH system is studied by IR spectroscopy. Based on the IR spectroscopy data correlated with the data obtained when studying the protonation processes of boron cluster anions [B6H6]2– and [B10H10]2–, the possibility to prepare the protonated form of the closo-dodecaborate anion, namely monoanion [B12H13], is concluded in CF3COOH and the CH3CN/CF3COOH system. In the IR spectra of salts of the protonated forms of anions [BnHn]2– (n = 6, 10, 12) in solutions and Nujol mulls, a high-frequency shift of the ν(BH) absorption bands is observed as compared with the spectra of salts of non-protonated anions Cat2[BnHn] (Δν = 70–100 cm–1).  相似文献   

11.
We report sufficient theoretical evidence of the energy stability of the e+?H22? molecule, formed by two H? anions and one positron. Analysis of the electronic and positronic densities of the latter compound undoubtedly points out the formation of a positronic covalent bond between the otherwise repelling hydride anions. The lower limit for the bonding energy of the e+?H22? molecule is 74 kJ mol?1 (0.77 eV), accounting for the zero‐point vibrational correction. The formation of a non electronic covalent bond is fundamentally distinct from positron attachment to stable molecules, as the latter process is characterized by a positron affinity, analogous to the electron affinity.  相似文献   

12.
Multiply charged negative ions are ubiquitous in nature. They are stable as crystals because of charge compensating cations; while in solutions, solvent molecules protect them. However, they are rarely stable in the gas phase because of strong electrostatic repulsion between the extra electrons. Therefore, understanding their stability without the influence of the environment has been of great interest to scientists for decades. While much of the past work has focused on dianions, work on triply charged negative ions is sparse and the search for the smallest trianion that is stable against spontaneous electron emission or fragmentation continues. Stability of BeB11(X)123− (X=CN, SCN, BO) trianions is demonstrated in the gas phase, with BeB11(CN)123− exhibiting colossal stability against electron emission by 2.65 eV and against its neutral adduct by 15.85 eV. The unusual stability of these trianions opens the door to a new class of super‐pnictogens with potential applications in aluminum‐ion batteries.  相似文献   

13.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

14.
It has been demonstrated that the reaction of Cat[Ag[B12H12]] or [Ag2[B12H12]] with chelating ligands L (L = bipy, phen) leads to the selective formation of stable [(Ag2(L)2[B12H12]] n 1D polymers irrespective of the nature of cation (Cat) in the starting reagent, the ratio of the reaction components, and the solvent used. The structures of [Ag2(bipy)2[B12H12]] n · 2CH3CN and [Ag2(phen)2[B12H12]] n · DMF have been determined by X-ray crystallography. It has been demonstrated that the [B12H12]2? anion in polymer chains acts as a bridging ligand coordinated to silver atoms through edges or through an edge and a vertex of the icosahedron. The Ag–B(H) and Ag–H(B) distances are within 2.638(3)–3.074(3) and 1.90–2.80 Å, respectively. These complexes are the first examples of 1D coordination polymers based on the [B12H12]2? anion and azaheterocyclic ligands L.  相似文献   

15.
The closo‐dodecaborate [B12H12]2? is degraded at room temperature by oxygen in an acidic aqueous solution in the course of several weeks to give B(OH)3. The degradation is induced by Ag2+ ions, generated from Ag+ by the action of H2S2O8. Oxa‐nido‐dodecaborate(1?) is an intermediate anion, that can be separated from the reaction mixture as [NBzlEt3][OB11H12] after five days in a yield of 18 %. The action of FeCl3 on the closo‐undecaborate [B11H11]2? in an aqueous solution gives either [B22H22]2? (by fusion) or nido‐B11H13(OH)? (by protonation and hydration), depending on the concentration of FeCl3. In acetonitrile, however, [B11H11]2? is transformed into [OB11H12]? by Fe3+ and oxygen. The radical anions [B12H12] ˙ ? and [B11H11] ˙ ? are assumed to be the primary products of the oxidation with the one‐electron oxidants Ag2+ and Fe3+, respectively. These radical anions are subsequently transformed into [OB11H12]? by oxygen. The crystal structure analysis shows that the structure of [OB11H12]? is derived from the hypothetical closo‐oxaborane OB12H12 by removal of the B3 vertex, leaving a non‐planar pentagonal aperture with a three‐coordinate O vertex, as predicted by NMR spectra and theory.  相似文献   

16.
Preparation and Characterization of Thiocyanate Derivatives of the Hydroborate Anions B10H102? and B12H122? The reaction of B10H102? or B12H122? with (SCN)2 in dichloromethane yields mixtures of thiocyanatohydroborates from which the pure isomers 1-and 2-(SCN)B10H92?, 1, 10-(SCN)2B10H82?, and 1-(SCN)B12H112? are isolated by ion exchange chromatography on diethylaminoethyl cellulose. The structures are determined by 11B and 11B{1H}NMR spectroscopy. There are characteristic chemical shifts due to apical and equatorial substituents, respectively. In B10H102? the substitution at apical positions is prefered. The IR and Raman spectra are similar to those of isosteric halogeno derivatives in the region of ν(BH) and of the borate cages. Because of the high frequencies of ν(CN): 2120–2140 cm?1 S coordination of SCN? is supposed.  相似文献   

17.
The reaction of pentaborane(9) with NaCN occurs in a 1:1 molar ratio at temperatures between ? 30° and + 10°C to yield the complex Na[B5H9CN], which can be isolated in the form of a dioxanate. When excess pentaborane(9) is used the reaction is relatively clean and yields predominantly the [B9H14]? ion. With NaBH 3CN no intermediates of the type Na[B5H9CN] are detected, and the major product is the [B9H14]? ion, but no hydrogen is evolved in the reaction. Structures for the intermediate anions are suggested. No monocarbon carbaboranes were detected in any of the reactions.  相似文献   

18.
The [B12H12]2? anion shows an extensive substitutional chemistry based on its three‐dimensional aromaticity. The replacement of functional groups can be attained by electrophilically induced substitution caused by Brønsted or Lewis acidic electrophiles (e.g. Pt2+). Until now, it was impossible to structurally characterize a metal‐substituted [B12H12]2? cage. When an aqueous solution containing both Bi3+ cations and [B12H12]2? anions was heated, the charge‐neutral bismuth undecahydro‐closo‐dodecaborane BiB12H11 was obtained, representing a new class of metalated [B12H12]2? clusters. The title compound was characterized by single‐crystal X‐ray diffraction and NMR spectroscopic methods. Compared to the typical B?H bond, the short B?Bi single bond (230 pm) exhibits inverted polarity.  相似文献   

19.
Three new salts of tetrahedral rhenium chalcocyanide cluster anions [Re4Q4(CN)12]4? (Q = S, Se, Te) and 1,10-phenanthroline-1-ium cations, (phenH)4[Re4S4(CN)12]·6H2O (1), (phenH)4[Re4Se4(CN)12]·6H2O (2), and (phenH)4[Re4Te4(CN)12]·10H2O (3), have been synthesized by reactions of K4[Re4Q4(CN)12nH2O with 1,10-phenanthroline in the presence of Nd3+ in an acidic aqueous medium (pH 4). 1 and 2 exhibit similar 2-D layered supramolecular architectures based on hydrogen bonds between water molecules, CN-groups of cluster anions, and phenH+ cations. The latter are involved in ππ and C–H?π stacking interactions, connecting the adjacent layers with each other. Complex 3 demonstrates a 3-D framework based on hydrogen bonds between water molecules and CN-groups, ππ and C–H?π interactions. Notably short O···Te contacts of 3.40 and 3.50 Å are found in the structure of 3. The thermal properties of 1–3 have been investigated by TG-DTG.  相似文献   

20.
Cluster bond enthalpies, EL(BB), and orders, n?(BB), for the structurally characterised closo anions, BnHn2? (n = 6 and 8–12), have been estimated using the logarithmic length—enthalpy and enthalpy—order relationships EL(BB) (kJ mol?1) = 1.766 × 1011 [L(BB)]?4.0 and EL(BB) (kJ mol?1) = 318.8[n?(BB)]0.697, respectively. In a parallel study, the molecular-orbital bond index CNDO-based calculation method has been used to give BB and BH bond indices, I(BB) and I(BH), from which bond index based bond enthalpies, EI, have been calculated using the relationships EI(BB) = 297.9 I(BB) and EI(BH) = 374.8I(BH) (enthalpies in kJ mol?1; lengths in pm). From these, total skeletal bond enthalpies Σ E(BB), and total bond enthalpies, Σ E(BB) + Σ E(BH), have been calculated. Although calculated values of EL and Σ EL generally exceed those of EI and Σ EI by some 8% and calculated values of I generally exceed those of n? by a greater amount, the trends in these parameters for the series of BnHn2? anions are very similar, showing the greater efficiency with which the n + 1 skeletal electron pairs are used as n increases. However, the two approaches differ in that, whereas the Σ EI values suggest that the anions are all of comparable stability, the ΣEL values clearly show B6H62?, B10H102? and B12H122? to be more stable than B8H82?, B9H92? and B11H112?. The interatomic distances in B7H72? and in the unknown B5 H52? are estimated and used to assess their relative stabilities. The EL values suggest that B7 H72? is of comparable stability to B8H82? etc., but show B5H52? as relatively unstable. The EI values suggest that both of these anions should be relatively stable members of the series of closo anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号