首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of fluorocarbon‐ containing hydrophobically modified sodium polyacrylic acid (FMPAANa) (0.5 wt%) with various surfactants (anionic, nonionic and cationic) has been investigated by rheological measurements. Different rheological behaviors are displayed for ionic surfactants and nonionic surfactants. Fluorinated surfactants have stronger affinity with polyelectrolyte hydrophobes comparing with hydrogenated surfactants. The hydrophobic association of FMPAANa with a cationic surfactant (CTAB) and a fluorinated nonionic surfactant (FC171) is much stronger than with a nonionic surfactant (NP7. 5) and an anionic surfactant (FC143). Further investigation of the effects of temperature on solution properties shows that the dissociation energy Em is correlated to the strength of the aggregated junctions.  相似文献   

2.
Effect of surfactant presence on electrochemical generation of titrants has been evaluated and discussed for the first time. Cationic (1-dodecylpyridinium and cetylpyridinium bromide), anionic (sodium dodecyl sulfate) and nonionic (Triton X100 and Brij® 35) surfactants as well as nonionic high molecular weight polymer (PEG 4000) do not react with the electrogenerated bromine, iodine and hexacyanoferrate(III) ions. The electrogenerated chlorine chemically interact with Triton X100 and Brij® 35. The allowable range of surfactants concentrations providing 100% current yield has been found. Chain-breaking low molecular weight antioxidants (ascorbic acid, rutin, α-tocopherol and retinol) were determined by reaction with the electrogenerated titrants in surfactant media. Nonionic and cationic surfactants can be used for the determination of antioxidants by reaction with the electrogenerated halogens. On contrary, cationic surfactants gives significantly overstated results of antioxidants determination with electrogenerated hexacyanoferrate(III) ions. The use of surfactants in coulometry of α-tocopherol and retinol provides their solubilization and allows to perform titration in water media. Simple, express and reliable coulometric approach for determination of α-tocopherol, rutin and ascorbic acid in pharmaceuticals using surfactant media has been developed. The relative standard deviation of the measurements does not exceed of 5%.  相似文献   

3.
The evolution of the microstructure and composition occurring in the aqueous solutions of di-alkyl chain cationic/nonionic surfactant mixtures has been studied in detail using small angle neutron scattering, SANS. For all the systems studied we observe an evolution from a predominantly lamellar phase, for solutions rich in di-alkyl chain cationic surfactant, to mixed cationic/nonionic micelles, for solutions rich in the nonionic surfactant. At intermediate solution compositions there is a region of coexistence of lamellar and micellar phases, where the relative amounts change with solution composition. A number of different di-alkyl chain cationic surfactants, DHDAB, 2HT, DHTAC, DHTA methyl sulfate, and DISDA methyl sulfate, and nonionic surfactants, C12E12 and C12E23, are investigated. For these systems the differences in phase behavior is discussed, and for the mixture DHDAB/C12E12 a direct comparison with theoretical predictions of phase behavior is made. It is shown that the phase separation that can occur in these mixed systems is induced by a depletion force arising from the micellar component, and that the size and volume fraction of the micelles are critical factors.  相似文献   

4.
Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.  相似文献   

5.
Abstract

This study investigated the effect of cationic, anionic (saturated and unsaturated), and nonionic surfactants on the formation, morphology, and surface properties of silica nanoparticles synthesized by the ammonium‐catalyzed hydrolysis of tetraethoxysilane in alcoholic media. Results indicate that at a relatively low surfactant concentration (1 × 10?3–1 × 10?6 M), cationic surfactants significantly affected the growth of silica particles as measured by dynamic light scattering and transmission electron microscopic analyses. In contrast, the anionic and nonionic surfactants showed relatively minor effects in the low concentration range. The magnitude of negative zeta potential was reduced for silica colloids that were synthesized in the presence of cationic surfactant because of charge neutralization. The presence of anionic surfactants only slightly increased the negative zeta potential while the nonionic surfactant showed no obvious effects. At high surfactant concentrations (>1 × 10?3 M), cationic and anionic surfactants both induced colloid aggregation, while the nonionic surfactant showed no effect on particle size. Raman spectroscopic analysis suggests that molecules of cationic surfactants adsorb on silica surfaces via head groups, aided by favorable electrostatic attraction, while molecules of anionic and nonionic surfactants adsorb via their hydrophobic tails.  相似文献   

6.
 The electrokinetic behavior and viscosity of anatase and alumina in mixed-surfactant solutions were investigated. Sodium dodecylsulfate and nonionic polyoxyethylene ethers were investigated as model surfactants. Pure nonionic surfactants adsorbed on anatase and coated the particles, so that the zeta potential was nearly zero near the critical micelle concentration of surfactant. At higher surfactant concentrations, an increase in the zeta potentials was observed, suggesting a change in the microstructure of the adsorbed layer. Addition of nonionic surfactant to positively charged anatase and alumina with some preadsorbed sodium dodecylsulfate reversed the surface charge of the oxide to negative, indicating enhanced coadsorption of the anionic surfactant. At higher concentrations of the nonionic surfactant, the charge reversed back to positive. Nonionic surfactants did not reverse the surface charge of these oxides in the absence of the anionic surfactant. Coenhanced adsorption of nonionic and anionic surfactants was used to stabilize alumina at the isoelectric point, where neither surfactant adsorbed appreciably on its own. These results suggest a dramatic change in conformation of the surfactant chains in mixed systems. Further explanation and justification of the proposed changes in adsorbed surfactant conformation require spectroscopic evidence. Received: 12 March 1997 Accepted: 22 July 1997  相似文献   

7.
Berthod A  Saliba O 《Talanta》1992,39(4):371-382
Acid-base properties of ordered media were investigated via potentiometry, polarography and electrochemical probes. Electrochemical probes have a pH-dependent reduction potential and their oxidized and reduced forms have a different affinity for aqueous and organic phases. Solutions of anionic, cationic and nonionic surfactants were investigated. One anionic and one cationic surfactant stabilized emulsion were studied. A water-dodecane-pentanol-anionic surfactant microemulsion and a water-heptane-butanol-cationic surfactant were also investigated for several compositions. In micellar solutions and emulsions, it was possible to standardize and use the classical glass electrode for pH values in the range 1-12. The hydrogen electrode was required in the microemulsion systems. The reduction of electrochemical probes was studied by polarography. It is shown that in the ordered media studied, the aqueous phase played the most important role in micellar solutions and in O/W emulsions, as far as acid-base properties were concerned. In microemulsions, the acid-base properties of the aqueous phase were very different to those of water. The alizarin probe could be reduced at a "local" pH of about 12 when the aqueous phase pH was only 6.  相似文献   

8.
The effects of monomeric surfactants on the hydride transfer from (one electron oxidation of) methylene blue leucodye to (by) 2,5-dihydroxy-1,4-benzoquinone in aqueous solution were investigated at 25°C using a stopped-flow spectrometer. The results indicated that cationic, anionic, and zwitterionic surfactants inhibited the reaction while nonionic surfactant showed no appreciable effect on the reaction. These observations are rationalized by electrostatic factors between surfactant monomer (or micelle) and reactant with charge or the charge transfer complex of the hydride transfer reaction. Above the cmc, the effects are treated quantitatively using a kinetic model.  相似文献   

9.
Effective plastic film deinking could permit the reuse of recycled polymer to produce clear film, reduce solid waste for landfills, reduce raw material demand for polymer production, and aid process economics. In this study, the deinking of a commercial polyethylene film printed with water-based ink was studied using surfactants in the presence of hardness ions (calcium ions) at various pH levels. The electrostatic properties of ink particles in a washing bath were also investigated. Synthetic anionic surfactant or fatty acid soap in the presence of calcium ions at alkaline pH levels was found to be nearly as effective at deinking as cationic, nonionic, or amphoteric surfactants alone. However, adding calcium ions decreases the deinking effectiveness of cationic, nonionic, and amphoteric surfactants. Increasing the length of the ionic surfactant hydrophobe enhances deinking. Zeta potential measurements showed that water-based ink particles in water reach the point of zero charge (PZC) at a pH of about 3.6, above which ink particles are negatively charged, so cationic surfactant tends to adsorb better on the ink than anionic surfactant above the PZC in the absence of calcium. As the cationic surfactant concentration is varied between 0.005 and 25 mM, the zeta potential of the ink particles reverses from negative to positive owing to adsorption of cationic surfactant. For anionic surfactants, added calcium probably forms a bridge between the negatively charged ink and the negatively charged surfactant head groups, which synergizes adsorption of the surfactant and aids deinking. In contrast, calcium competes for adsorption sites with cationic and nonionic surfactants, which inhibits deinking. All the surfactants studied here disperse ink particles effectively in the washing bath above pH 3 except for the ethoxylated amine surfactant.  相似文献   

10.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

11.
The interactions between double-stranded DNA (dsDNA) and three different kinds of surfactants, i.e., cationic, anionic, and nonionic surfactants, were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and UV-vis spectroscopy. Multilayer films composed of DNA and surfactants were prepared at gold electrode by electrostatic or hydrophobic interactions. It was found that the cationic surfactant, CTAB, can bind to DNA by electrostatic interaction, and the electron transfer resistance of CTAB-DNA complex film increases first and then decreases with CTAB concentration. The anionic surfactant, LAS, can bind to DNA but by hydrophobic interaction, and the electron transfer resistance of the complex film keeps decreasing with LAS concentration. Nonionic surfactants can also directly bind to DNA by hydrophobic interaction. All the three different kinds of surfactants can form multilayer films with DNA on the electrode surface. The chemical structure of DNA keeps unchanged during interacting with these surfactants. The binding modes of DNA with these three different kinds of surfactants were also deduced.  相似文献   

12.
Surfactants of practical interest are invariably mixtures of different types. In this study, mixtures of sugar-based n-dodecyl-beta-D-maltoside with cationic dodecyltrimethylammonium bromide, anionic sodium dodecylsulfate, and nonionic pentaethyleneglycol monododecyl ether in solution, with and without supporting electrolyte, have been studied using surface tension and fluorescence spectroscopic techniques. Interaction parameters and mole fraction of components in mixed micelles were calculated using regular solution theory. The magnitude of interactions between n-dodecyl-beta-D-maltoside and other surfactants followed the order anionic/nonionic > cationic/nonionic > nonionic/nonionic mixtures. Since all surfactants have the same hydrophobic groups, strengths of interactions are attributed to the structures of hydrophilic headgroups. Electrolyte reduced synergism between n-dodecyl-beta-D-maltoside and ionic surfactant due to charge neutralization. Industrial sugar-based surfactant, dodecyl polyglucoside, yielded results similar to that with dodecyl maltoside, implying that tested commercial alkyl polyglucosides are similar to the pure laboratory samples in synergistic interactions with other surfactants. Fluorescence study not only supported the cmc results using tensiometry, but showed that interfaces of all the above mixed micelle/solution interfaces are mildly hydrophobic. Based on these results, an attempt is made to discover the nature of interactions to be a combination of intermolecular potential energies and free energy due to packing of surfactant molecules in micelles.  相似文献   

13.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

14.
Seeking to enhance coal mine safety, an experimental study of a kind of water-based explosion suppression medium for the absorption of mine gas was carried out. Using methane as the model gas, solubilizing experiments with different concentrations of anionic and nonionic surfactants were carried out using headspace gas chromatography for surfactants consisting of sodium fatty alcohol polyoxyethylene ether carboxylate (AEC), fatty acid methyl ester sulfonate (MES), fatty methyl ester ethoxylate (FMEE), hexyl d-glucoside (APG06), octyl beta-d-glucopyranoside (APG08) and n-decyl glucoside (APG10). By selecting individual surfactants, the study investigated the methane solubilization performance of water mist with binary anionic–nonionic surfactants. Furthermore, the release of methane in solution was also examined. The results show that the apparent solubility of methane in solution is linearly and positively correlated with the surfactant concentration. The methane solubilization is significantly improved by the addition of anionic–nonionic surfactants. The optimal solubilizing ratio of the anionic–nonionic surfactant varies with the solution compositions. For a fixed ratio, surfactant compositions exhibit the most distinct synergistic effect and the best performance for methane solubilization. The release of methane from mixed micelles composed of the compound solution is superior to that of a single surfactant. Through the analysis of the solubilization effect and the stability of different absorbents, it is concluded that the anionic–nonionic surfactant system shows much better capability than the other selected surfactants.  相似文献   

15.
杜娟  赵丹  陈彦国  何治柯 《化学学报》2006,64(10):963-967
探讨了表面活性剂存在下, 水溶性阴离子共轭聚合物聚[5-甲氧基-2-(3-磺酰化丙氧基)-1,4-苯撑乙烯](简写为MPS-PPV)的微环境变化对荧光性质及电荷转移的影响. 结果表明, 阳离子表面活性剂及非离子表面活性剂使MPS-PPV荧光增强, 阴离子表面活性剂使其荧光先增强后减弱; 在MPS-PPV/表面活性剂体系中加入电子接受体Pd2+, 发现非离子表面活性剂体系的荧光猝灭效率提高, 阴离子及阳离子表面活性剂体系荧光猝灭效率下降. 此研究对研制基于阴离子共聚物的新型生物化学传感器具有一定的指导意义.  相似文献   

16.
The interaction has been studied in aqueous solutions between a negatively charged conjugated polyelectrolyte poly{1,4-phenylene-[9,9-bis(4-phenoxybutylsulfonate)]fluorene-2,7-diyl} copolymer (PBS-PFP) and several cationic tetraalkylammonium surfactants with different structures (alkyl chain length, counterion, or double alkyl chain), with tetramethylammonium cations and with the anionic surfactant sodium dodecyl sulfate (SDS) by electronic absorption and emission spectroscopy and by conductivity measurements. The results are compared with those previously obtained on the interaction of the same polymer with the nonionic surfactant C12E5. The nature of the electrostatic or hydrophobic polymer-surfactant interactions leads to very different behavior. The polymer induces the aggregation with the cationic surfactants at concentrations well below the critical micelle concentration, while this is inhibited with the anionic SDS, as demonstrated from conductivity measurements. The interaction with cationic surfactants only shows a small dependence on alkyl chain length or counterion and is suggested to be dominated by electrostatic interactions. In contrast to previous studies with the nonionic C12E5, both the cationic and the anionic surfactants quench the PBS-PFP emission intensity, leading also to a decrease in the polymer emission lifetime. However, the interaction with these cationic surfactants leads to the appearance of a new emission band (approximately 525 nm), which may be due to energy hopping to defect sites due to the increase of PBS-PFP interchain interaction favored by charge neutralization of the anionic polymer by cationic surfactant and by hydrophobic interactions involving the surfactant alkyl chains, since the same green band is not observed by adding either tetramethylammonium hydroxide or chloride. This effect suggests that the cationic surfactants are changing the nature of PBS-PFP aggregates. The nature of the polymer and surfactant interactions can, thus, be used to control the spectroscopic and conductivity properties of the polymer, which may have implications in its applications.  相似文献   

17.
混合表面活性剂微乳状液的形成和相行为研究进展   总被引:23,自引:0,他引:23  
讨论了单一表面活性剂,混合表面活性剂,助溶剂等对油/水微乳状液的形成和相行为的影响。对混合表面活性剂微乳状液的形成和相行为研究工作进行了归纳和总结,重点分析了正负离子表面活性剂微乳状液的相行为和表面活性剂微乳状液的相行为和表面活性剂效率,讨论了微乳状液形成的影响因素,并提出了这一研究领域可能的发展前景。  相似文献   

18.
The physicochemical properties of Ag nanoparticles have been determined by the nature of the used chemical reductors. The reported procedures describe the reduction of silver ions using N‐Phenylbenzohydroxamic acid (PBHA) and ascorbic acid individually. The influencing factors including cationic, anionic, zwitterionic and nonionic surfactants and pH have also been investigated in detail.  相似文献   

19.
采用循环伏安法考察了所制备的聚氯乙烯(PVC)膜修饰电极的稳定性,结果表明,该修饰电极性能稳定,电极反应过程为扩散控制的过程。以循环伏安法、计时库仑法、稳态极化曲线法和交流阻抗法分别考察了阳离子(十六烷基三甲基溴化铵,CTMAB)、阴离子(十二烷基硫酸钠,SDS)和非离子(脂肪醇聚氧乙烯醚,AEO9)3种不同类型的表面活性剂对PVC膜-Ag[B(ph)4]修饰电极反应过程的影响。结果表明:加入CT-MAB或SDS后,PVC膜中Ag[B(ph)4]氧化态和还原态的扩散系数分别比电极在0.1mol/LKOH支持电解质中的扩散系数小,PVC膜修饰电极的反应过程受扩散控制的特征变得更明显,表明在此条件下膜中的电子转移速度加快,CTMAB或SDS对PVC膜修饰电极的电极反应过程有增敏作用。而加入AEO9后,PVC膜中的Ag[B(ph)4]氧化态和还原态的扩散系数比电极在0.1mol/LKOH支持电解质中的扩散系数大,并使电极反应的控制步骤从扩散控制转向含电子转移控制的扩散控制,表明在此条件下膜中的电子转移速度变慢,AEO9对PVC膜修饰电极的电极反应过程有抑制作用。  相似文献   

20.
We have investigated the formation of threadlike micelles consisting of anionic surfactants and certain additives in aqueous solution. Threadlike micelles long enough to be entangled with each other were formed in a clear aqueous solution of two anionic surfactants, sodium hexadecyl sulfate and sodium tetradecyl sulfate. These solutions also contained pentylammonium bromides or p-toluidine halides and exhibited remarkable viscoelasticity. Because the molar ratio of surfactants to cationic additives in these micelles seemed close to unity, they formed 1:1 stoichiometric complexes between surfactant anions and additive cations, as previously found in systems of cationic surfactants such as hexadecyltrimethylammonium bromide and sodium salicylate. The viscoelastic behavior of these anionic threadlike micellar systems was adequately described by a simple Maxwell element with a single relaxation time and strength, as in many similar cationic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号