首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There has been a great deal of recent interest in extended compounds containing Ru3+ and Ru4+ in light of their range of unusual physical properties. Many of these properties are displayed in compounds with the perovskite and related structures. Here we report an array of structurally diverse hybrid ruthenium halide perovskites and related compounds: MA2RuX6 (X=Cl or Br), MA2MRuX6 (M=Na, K or Ag; X=Cl or Br) and MA3Ru2X9 (X=Br) based upon the use of methylammonium (MA=CH3NH3+) on the perovskite A site. The compounds MA2RuX6 with Ru4+ crystallize in the trigonal space group and can be described as vacancy‐ordered double‐perovskites. The ordered compounds MA2MRuX6 with M+ and Ru3+ crystallize in a structure related to BaNiO3 with alternating MX6 and RuX6 face‐shared octahedra forming linear chains in the trigonal space group. The compound MA3Ru2Br9 crystallizes in the orthorhombic Cmcm space group and displays pairs of face‐sharing octahedra forming isolated Ru2Br9 moieties with very short Ru–Ru contacts of 2.789 Å. The structural details, including the role of hydrogen bonding and dimensionality, as well as the optical and magnetic properties of these compounds are described. The magnetic behavior of all three classes of compounds is influenced by spin–orbit coupling and their temperature‐dependent behavior has been compared with the predictions of the appropriate Kotani models.  相似文献   

2.
Despite the progressive enhancement in the flexibility of Pb-based perovskites for optoelectronic applications, regrettably, they are facing two main challenges; (1) instability, which originates from using organic components in the perovskite structure, and (2) toxicity due to Pb. Therefore, new, stable non-toxic perovskite materials are demanded to overcome these drawbacks. The research community has been working on a wide variety of Pb-free perovskites with different molecular formulas and dimensionality. A variety of Pb-free halide double perovskites have been widely explored by different research groups in search for stable, non-toxic double perovskite material. Especially, Cs-based Pb-free halide double perovskite has been in focus recently. Herein, we present a review of theoretical and experimental research on Cs-based Pb-free double halide perovskites of structural formulas Cs2M+M3+X6 (M+ = Ag+, Na+, In+ etc.; M3+= Bi3+, In3+, Sb3+; X = Cl, Br, I¯) and Cs2M4+X6 (M4+ = Ti4+, Sn4+, Au4+ etc.). We also present the challenges faced by these perovskite compounds and their current applications especially in photovoltaics alongside the effect of metal dopants on their performance.  相似文献   

3.
4.
In layered hybrid perovskites, such as (BA)2PbI4 (BA=C4H9NH3), electrons and holes are considered to be confined in atomically thin two dimensional (2D) Pb–I inorganic layers. These inorganic layers are electronically isolated from each other in the third dimension by the insulating organic layers. Herein we report our experimental findings that suggest the presence of electronic interaction between the inorganic layers in some parts of the single crystals. The extent of this interaction is reversibly tuned by intercalation of organic and inorganic molecules in the layered perovskite single crystals. Consequently, optical absorption and emission properties switch reversibly with intercalation. Furthermore, increasing the distance between inorganic layers by increasing the length of the organic spacer cations systematically decreases these electronic interactions. This finding that the parts of the layered hybrid perovskites are not strictly electronically 2D is critical for understanding the electronic, optical, and optoelectronic properties of these technologically important materials.  相似文献   

5.
Zero-dimensional (0D) lead-free perovskites have unique structures and optoelectronic properties. Undoped and Sb-doped all inorganic, lead-free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb-doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb-doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high-performance 0D lead-free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

6.
By dimensional reduction of the 3D motif of Cs2AgBiBr6, a lead‐free 2D hybrid double perovskite, (i‐PA)2CsAgBiBr7 ( 1, i‐PA=isopentylammonium), was successfully designed. It adopts a quantum‐confined bilayered structure with alternating organic and inorganic sheets. Strikingly, the unique 2D architecture endows it highly anisotropic nature of physical properties, including electric conductivity and optical absorption (the ratio αb/αc=1.9 at 405 nm). Such anisotropy attributes result in the strong polarization‐sensitive responses with large dichroic ratios up to 1.35, being comparable to some 2D inorganic materials. This is the first study on the hybrid double perovskites with strong polarization sensitivity. A crystal device of 1 also exhibits rapid response speed (ca. 200 μs) and excellent stabilities. The family of 2D hybrid double perovskites are promising optoelectronic candidates, and this work paves a new pathway for exploring new green polarization‐sensitive materials.  相似文献   

7.
Zero‐dimensional (0D) lead‐free perovskites have unique structures and optoelectronic properties. Undoped and Sb‐doped all inorganic, lead‐free, 0D perovskite single crystals A2InCl5(H2O) (A=Rb, Cs) are presented that exhibit greatly enhanced yellow emission. To study the effect of coordination H2O, Sb‐doped A3InCl6 (A=Rb, Cs) are also synthesized and further studied. The photoluminescence (PL) color changes from yellow to green emission. Interestingly, the photoluminescence quantum yield (PLQY) realizes a great boost from <2 % to 85–95 % through doping Sb3+. We further explore the effect of Sb3+ dopants and the origin of bright emission by ultrafast transient absorption techniques. Furthermore, Sb‐doped 0D rubidium indium chloride perovskites show excellent stability. These findings not only provide a way to design a set of new high‐performance 0D lead‐free perovskites, but also reveal the relationship between structure and PL properties.  相似文献   

8.
The influence of the cobalt substitution for manganese ions in the mixed valence perovskites La0.8Na0.2Mn1−xCoxO3 (0?x?0.2) was investigated by X-ray, electric transport and magnetic measurements. The study carried out on sintered polycrystalline samples revealed the rhombohedral () structure and the insulator-metal transition connected with a ferromagnetic arrangement in the whole concentration range. Increasing concentration of cobalt ions leads to a gradual decrease of PM-FM and I-M transition temperatures. An influence of the cobalt ions on the observed behavior is attributed to charge compensation Mn3+→Mn4+ leading to the formation of stable couples Mn4+-Co2+. Therefore the double-exchange interactions Mn3+-O2−-Mn4+ partly vanish and they are replaced by positive superexchange interactions Mn4+-O2−-Co2+, but of a semiconducting character.  相似文献   

9.
High-resolution synchrotron and neutron powder diffraction techniques were used to determine precise structures for the series of perovskite oxides A2−xSrxCoWO6 (ACa, or Ba, 0?x?2). The studies demonstrated that the symmetry decreases as the average size of the A-site cation decreases with a sequential introduction of in-phase and out-of-phase tilting of the BO6 octahedra. A cubic structure in Fmm with rock-salt like ordering of the Co and W cations was formed for Ba2−xSrxCoWO6 with x∼<1.4. As the Sr content was increased, the materials became tetragonal in I4/m and ultimately monoclinic in P21/n. A mixture of monoclinic and tetragonal phases occurs in Sr2CoWO6 at room temperature but this was purely monoclinic at 20 K.  相似文献   

10.
Formamidinium (FA) lead iodide perovskite materials feature promising photovoltaic performances and superior thermal stabilities. However, conversion of the perovskite α‐FAPbI3 phase to the thermodynamically stable yet photovoltaically inactive δ‐FAPbI3 phase compromises the photovoltaic performance. A strategy is presented to address this challenge by using low‐dimensional hybrid perovskite materials comprising guaninium (G) organic spacer layers that act as stabilizers of the three‐dimensional α‐FAPbI3 phase. The underlying mode of interaction at the atomic level is unraveled by means of solid‐state nuclear magnetic resonance spectroscopy, X‐ray crystallography, transmission electron microscopy, molecular dynamics simulations, and DFT calculations. Low‐dimensional‐phase‐containing hybrid FAPbI3 perovskite solar cells are obtained with improved performance and enhanced long‐term stability.  相似文献   

11.
Chiral quasi‐2D perovskite single crystals (SCs) were investigated for their circular polarized light (CPL) detecting capability. Quasi‐2D chiral perovskites, [(R)‐β‐MPA]2MAPb2I7 ((R)‐β‐MPA=(R)‐(+)‐β‐methylphenethylamine, MA=methylammonium), have intrinsic chirality and the capability to distinguish different polarization states of CPL photons. Corresponding quasi‐2D SCs CPL photodetector exhibit excellent detection performance. In particular, our device responsivity is almost one order of magnitude higher than the reported 2D perovskite CPL detectors to date. The crystallization dynamics of the film were modulated to facilitate its carrier transport. Parallel oriented perovskite films with a homogeneous energy landscape is crucial to maximize the carrier collection efficiency. The photodetector also exhibits superior mechanical flexibility and durability, representing a promising candidate for sensitive and robust CPL photodetectors.  相似文献   

12.
The influence of the cobalt substitution for manganese ions in the series of the perovskites Pr0.8Na0.2Mn(1−x)CoxO3 (0?x?0.1) was investigated. The study of electric and magnetic properties was carried out on sintered polycrystalline samples. The composition of x=0.04 exhibits an insulator to metal-like (I-M) transition at ∼106 K, connected with a ferromagnetic arrangement. For x=0.1, however, an insulating behavior persists down to low temperatures in spite of the transition to the bulk ferromagnetism. The observed properties are related to an acting of the cobalt ions as point defects. They disturb the tendency to charge ordering and instead of the antiferromagnetic arrangement typical for x=0 ferromagnetic double-exchange interactions Mn3+-O2−-Mn4+ and Mn3.5+δ-O2−-Co2+, decisive for the resulting behavior, arise.  相似文献   

13.
Herein we report on our systematic investigations on the solution processed synthesis and characterization of transition metal halides (guanidinium, formamidinium, and methylammonium nickel bromides and chlorides as well as methylammonium manganese bromide) with the composition ABX3 (A = organic cation; B = Mn, Ni; X = Cl, Br). The investigations were carried out with respect to possible applications of 3d transition metal compounds for the perovskite solar cell. All the compounds represent different variants of the hexagonal perovskite structure (2H). Crystal structures and symmetry relations are discussed. Additionally, (CH3NH3)2MnI4, which consists of tetrahedral coordinated Mn2+, and the water containing compounds (CH3NH3)MnBr3 · 2H2O, which forms chains of edge sharing octahedra, as well as (CH3NH3)NiCl3 · 2H2O, which consists of dimers of octahedra, are presented. Investigations on the crystal structures are supported by vibrational and optical spectroscopy.  相似文献   

14.
The catalytic activity of Ba2Ru0.67Bi1.33O6, Ba2RuBiO6, Ba3Ru2BiO9 and BaRuO3 towards NO-decomposition prior to and after treatment with NH3 has been studied. About 100% degree of conversion has been achieved at 400°C for samples with the highest percentage of hexagonal stacking in their crystal structures. It has been shown that the active sites are units of two or three face-sharing [RuO6] octahedra in which a strong Ru−Ru interaction takes placevia the common faces.  相似文献   

15.
In recent years, there have been rapid advances in the synthesis of lead halide perovskite nanocrystals (NCs) for use in solar cells, light emitting diodes, lasers, and photodetectors. These compounds have a set of intriguing optical, excitonic, and charge transport properties, including outstanding photoluminescence quantum yield (PLQY) and tunable optical band gap. However, the necessary inclusion of lead, a toxic element, raises a critical concern for future commercial development. To address the toxicity issue, intense recent research effort has been devoted to developing lead‐free halide perovskite (LFHP) NCs. In this Review, we present a comprehensive overview of currently explored LFHP NCs with an emphasis on their crystal structures, synthesis, optical properties, and environmental stabilities (e.g., UV, heat, and moisture resistance). In addition, strategies for enhancing optical properties and stabilities of LFHP NCs as well as the state‐of‐the‐art applications are discussed. With the perspective of their properties and current challenges, we provide an outlook for future directions in this rapidly evolving field to achieve high‐quality LFHP NCs for a broader range of fundamental research and practical applications.  相似文献   

16.
ZrO2-supported La, Co oxide catalysts with different La, Co loading (2, 6, 8, 12 and 16 wt.% as LaCoO3) were prepared by impregnation of tetragonal ZrO2 with equimolar amounts of La and Co citrate precursors and calcination at 1073 K. The catalysts were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and BET specific surface area determination. Catalytic CO oxidation was performed at 298–800 K. XRD revealed the presence of tetragonal zirconia with traces of the monoclinic phase. LaCoO3 perovskite was also detected for loading higher than 6%. XAS experiments suggested that at high loading LaCoO3 and Co3O4 were formed, while at low loading, La, Co oxide species interacting with support, and hard to be structurally defined, prevailed. The catalysis study evidenced that the catalytic activity was due to segregated and highly dispersed cobalt oxide species.  相似文献   

17.
《Mendeleev Communications》2022,32(3):311-314
Solution crystallization techniques of hybrid lead halides for perovskite photovoltaics, while remaining the most common method for fabricating solar cells, are inevitably complicated by the formation of numerous intermediate solvates that predetermine the morphology and properties of the final perovskite light-harvesting layer. Here, for the first time, a chemical classification of known solvates is proposed based on a comprehensive analysis of their structural features and relationships with possible structural types.  相似文献   

18.
Metal oxides are some of the most promising candidates as electrocatalysts for electrical-energy-storage (EES) systems. Particularly, perovskite and pyrochlore oxides have been intensively investigated as bifunctional electrocatalysts because of their superior catalytic activities during the oxygen-reduction and -evolution reactions. However, the origin of the outstanding catalytic activities and structural changes of the materials are not clear, in part due to the difficulty in identification during electrocatalysis. In this Minireview, we present a critical overview of recent progress in understanding catalytic mechanisms of perovskite and pyrochlore oxides, highlighting the innovative in-situ X-ray absorption spectroscopy (XAS) analysis for electrochemical tests.  相似文献   

19.
Lead‐free perovskite structures have been recently attracting considerable attention because of their eco‐friendly nature and properties, such as their lead‐based structure. In this work, we reviewed the lead‐free double perovskite (LFDP) structure because of its unique electronic dimensions, chemical stability, and substitutional chemistry compared with other lead‐free structures. We highlighted the recent progress on crystal structure prediction, synthesis methods, metal dopants, and ligand passivation on LFDPs. LFDPs are useful for several applications, such as solar cells, light‐emitting diodes, degradation of photocatalytic dyes, sensors, and X‐ray detectors. This report provides a summary of recent progress as a reference for further research on lead‐free perovskite structures.  相似文献   

20.
Substituted LaMn1−yCoyO3 perovskite-type oxides (0.0 ≤ y ≤ 1.0) prepared by the citrae method, have been investigated as catalysts in the total combustion of acetylacetate. The characterization results indicate that the catalytic activity is enhanced in the substituted perovskites. The most active is the one with y = 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号