首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
铁钴双金属催化剂上二氧化碳加氢合成低碳烯烃   总被引:9,自引:0,他引:9  
研究了常压下铁钴双金属催化剂上二氧化碳催化加氢合成低碳烯烃的反应,考察了钴含量、反应温度对二氧化碳转化率、产物选择性的影响。结果表明,钴的添加有利于铁的碳化,提高了二氧化碳转化率,降低了一氧化碳选择性,提高了甲烷选择性,适量钴的添加促进了二氧化碳向烃的转化。在铁钴摩尔比67∶33,反应温度350℃,反应空速5000mlg-1h-1条件下,二氧化碳转化率达到281%,C+2选择性达到116%,烯烷比5  相似文献   

2.
采用有机金属化合物Pt2(dba)3(dba为二亚苄基丙酮)还原分解法制得均匀分布的Pt纳米颗粒(粒径在2.0nm左右),直接吸附到经预处理的Fe/C载体上,即得到了组合型Pt-Fe/C催化剂.采用透射电子显微镜(TEM)、X射线光电子能谱(XPS)和能量散射X射线谱(EDS)等技术表征了催化剂表面Pt颗粒大小分布,Pt、Fe化学态和催化剂表面元素等.将该组合型催化剂用于肉桂醛(CAL)选择性加氢反应,获得了良好的效果,其催化活性比浸渍法制备的Pt/C催化剂高1倍以上.在60°C、2.5h、4.0MPaH2反应条件下,1%(w,质量分数)Pt-1.5%(w)Fe/C催化剂肉桂醛加氢转化率为99.2%,肉桂醇(COL)选择性达到85.0%.  相似文献   

3.
《中国化学快报》2022,33(8):3757-3761
Selective hydrogenation of cinnamaldehyde (CAL) toward cinnamyl alcohol (COL) is an extremely important and challenging reaction. Herein, a series of PtxFey-Al2O3 bimetallic catalysts with varied Pt to Fe ratios were prepared by incipient wetness impregnation method. The introduction of Fe significantly modifies the electronic and surface properties of Pt, which clearly enhances the C=O hydrogenation selectivity. Among all the catalysts, Pt3Fe-Al2O3 displays the best catalytic performance and the conversion of CAL is 96.6% with 77.2% selectivity of COL within 1 h. In addition, Pt3Fe-Al2O3 had excellent reusability with 76% COL selectivity after five runs of the recycle process. Further characterization of the fresh, used and cycled catalysts revealed that the structure and electronic state of the synthesized PtxFey-Al2O3 are unchanged after hydrogenation reaction. The identical-location transmission electron microscopy (IL-TEM) results revealed that the interaction between the nanoparticles and the supports was strong and the catalyst was relatively stable.  相似文献   

4.
Summary The effect of transition metals (Cr, Mn, Fe, Co, Ni and Cu) on the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding semi-hydrogenated product over Pt/CNTs catalyst has been studied in ethanol at 343 K under 2.0 MPa H2 pressure. PtNi/CNTs catalyst shows good catalytic activity and selectivity of C=C bond hydrogenation, 68.4% for conversion of CMA and 97.0% for selectivity of hydrocinnamaldehyde (HCMA). PtCo/CNTs catalyst shows good catalytic activity and selectivity of C=O bond hydrogenation, 91.3% for conversion of CMA and 88.2% for selectivity of cinnamylalcohol (CMO).  相似文献   

5.
利用密度泛函理论研究了Pt(111)面及Pt14团簇对肉桂醛(CAL)的吸附作用和不完全加氢的反应机理。分析吸附能结果表明,肉桂醛分子以C=O与C=C键协同吸附在Pt(111)面上的六角密积(Hcp)位最稳定,以C=C键吸附在Pt14团簇上最稳定,且在Pt14团簇上的吸附作用较Pt(111)面更强。由过渡态搜索并计算得到的反应能垒及反应热可知,肉桂醛在Pt(111)面和Pt14团簇上均较容易对C=O键加氢得到肉桂醇(COL)。其中,优先加氢O原子为最佳反应路径,即Pt无论是平板还是团簇对肉桂醛加氢均有较好的选择性。同时发现,肉桂醛分子在Pt(111)面的加氢反应能垒较Pt14团簇上更低,即Pt的催化活性及对肉桂醛加氢产物选择性与其结构密切相关,其中,Pt(111)面对生成肉桂醇更加有利。  相似文献   

6.
The effect of transition metals (Cr, Mn, Fe, Co and Ni) on the hydrogenation of cinnamaldehyde over Pt/ZrO2 catalysts was studied in ethanol at 343K under 2.0MPa H2 pressure. PtCo/ZrO2 and PtFe/ZrO2 catalysts exhibit high selectivity and activity of hydrogenation for C=O (93.8% at 87.3% conversion and 83.6% at 88.6% conversion, respectively), and PtNi/ZrO2 exhibits high selectivity of hydrogenation for C=C (64.3% at 70.6% conversion). In the presence of trace H2O and NaOH, over the PtNi/ZrO2 (0.4wt%Ni) catalyst the selectivity to hydrocinnamalde hydereaches 90.6% and the conversion of cinnamaldehyde is 90.5%.  相似文献   

7.
Bimetallic Co–Ni catalysts in the composition range Co(1?x)Nix with x?=?0.0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and 1.0, with total metal loading of 15% w/w and supported on TiO2-P25, have been prepared by chemical reduction of the metal acetates by glucose in aqueous alkaline medium and characterized by XRD, TEM, TPR, XPS and H2-TPD techniques. Selective hydrogenation of cinnamaldhyde (CAL) to hydrocinnamaldehyde (HCAL), cinnamyl alcohol (COL) and hydrocinnamyl alcohol (HCOL) has been investigated at 20 bar pressure, in the temperature range 120–140 °C. Co/Ni crystallite sizes in the range 6.0?±?1 nm are observed by TEM. TPR and XPS results indicate the formation of nanoscale Co–Ni alloys, which tend to weaken M–H bond strength, as revealed by H2-TPD measurements. Ni/TiO2 displays very high conversion of CAL (86.9%) with high selectivity (78.7%) towards HCAL formation at 140 °C. Co/TiO2, on the other hand, exhibits relatively lower CAL conversion (55%) and higher selectivity (61.3%) for COL formation at the same temperature. However, bi-metallic Co–Ni catalysts in the composition range x?=?0.3–0.6 display very high conversion (>?98%) due to alloy formation and weakening of M–H bonds. Bimetallic Co0.7Ni0.3 catalyst displays high conversion of CAL (98.1%) and high selectivity (82.9%) towards HCOL. Overall CAL hydrogenation activity at 140 °C, when expressed as TOF, displays a maximum value at the composition Co0.5Ni0.5. Activity and selectivity patterns have been rationalized based on the reaction pathways observed on the catalysts and the influence of Co–Ni alloy formation and M–H bond strength. Thus, a synergetic effect, originating from an appropriate composition of base metal catalysts and reaction conditions, could result in hydrogenation activity comparable with noble metal based catalysts.  相似文献   

8.
Superior catalytic performance for selective 1,3-butadiene (1,3-BD) hydrogenation can usually be achieved with supported bimetallic catalysts. In this work, Pt−Co nanoparticles and Pt nanoparticles supported on metal–organic framework MIL-100(Fe) catalysts (MIL=Materials of Institut Lavoisier, PtCo/MIL-100(Fe) and Pt/MIL-100(Fe)) were synthesized via a simple impregnation reduction method, and their catalytic performance was investigated for the hydrogenation of 1,3-BD. Pt1Co1/MIL-100(Fe) presented better catalytic performance than Pt/MIL-100(Fe), with significantly enhanced total butene selectivity. Moreover, the secondary hydrogenation of butenes was effectively inhibited after doping with Co. The Pt1Co1/MIL-100(Fe) catalyst displayed good stability in the 1,3-BD hydrogenation reaction. No significant catalyst deactivation was observed during 9 h of hydrogenation, but its catalytic activity gradually reduces for the next 17 h. Carbon deposition on Pt1Co1/MIL-100(Fe) is the reason for its deactivation in 1,3-BD hydrogenation reaction. The spent Pt1Co1/MIL-100(Fe) catalyst could be regenerated at 200 °C, and regenerated catalysts displayed the similar 1,3-BD conversion and butene selectivity with fresh catalysts. Moreover, the rate-determining step of this reaction was hydrogen dissociation. The outstanding activity and total butene selectivity of the Pt1Co1/MIL-100(Fe) catalyst illustrate that Pt−Co bimetallic catalysts are an ideal alternative for replacing mono-noble-metal-based catalysts in selective 1,3-BD hydrogenation reactions.  相似文献   

9.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上,制备了Pt/MIL-101(Cr)催化剂,并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明,Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能,在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

10.
采用简单易行的浸渍法将Pt纳米粒子负载到MIL-101(Cr)上, 制备了Pt/MIL-101(Cr)催化剂, 并对其在肉桂醛选择性加氢反应的催化性能进行了研究。XRD、N2吸附、TEM和催化性能的研究结果表明, Pt的负载量对负载于MIL-101(Cr)上Pt纳米粒子的尺寸及所制备催化剂对肉桂醇的选择性有很大影响。低Pt负载量(1.0wt%)的Pt/MIL-101(Cr)较其他MOFs和无机材料在肉桂醛选择性加氢反应中表现出了高的催化性能, 在优化的反应条件下肉桂醛转化率和对肉桂醇的选择性可分别达96.5%和86.2%。Pt/MIL-101(Cr)催化剂具有良好的稳定性。Pt/MIL-101(Cr)所表现出的优良的催化性能同MIL-101(Cr)载体的孔道结构及其表面性质密切相关。  相似文献   

11.
《中国化学快报》2022,33(1):374-377
Although the selective hydrogenation of α,β-unsaturated aldehyde to unsaturated alcohol (UOL) is an extremely important transformation, it is still a great challenge to achieve high selectivity to UOL due to thermodynamic favoring of the CC hydrogenation over the CO hydrogenation. Herein, we report that iridium nanoclusters (Ir NCs) confined within hollow MIL-101(Fe) expresses satisfied reaction activity (93.9%) and high selectivity (96.2%) for the hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL) under 1 bar H2 atmosphere and room temperature. The unique hollow structure of MIL-101(Fe) benefits for the fast transport of reactant, ensuring the comparable reaction activity and better recyclability of Ir@MIL-101(Fe) than the counterparts which Ir NCs were on the surface of MIL-101(Fe). Furthermore, The X-ray photoelectron spectroscopy data indicates the electropositive Ir NCs, owing to the electron transfer from Ir to MIL-101(Fe), can interact with oxygen lone pairs, and Fourier transform infrared spectrum shows the Lewis acid sites in MIL-101(Fe) can strongly interact with CO bond, which contributes to a high selectivity for COL. This work suggests the considerable potential of synergetic effect between hollow MOFs and metal nanoclusters for selective hydrogenation reactions.  相似文献   

12.
负载于γ-Al_2O_3上的PPN[FeCo_3(CO)_(12)]簇合物作为催化剂前体,在CO加氢反应中显示出了较好的催化活性和对低碳烃的选择性。本文系统地考察了反应温度、反应时间、合成气比和气体空速对CO加氢反应,CO转化率和产物分布的影响。借助于ICP分析、电镜和原位FT-IR跟踪技术,对负载型双金属簇催化剂的金属负载量、催化剂表面状态和脱羰过程中催化剂表面结构的变化进行了分析和表征,获得了一些有意义的结果。  相似文献   

13.
The selective hydrogenation of cinnamaldehyde (CAL) was investigated using silica supported platinum catalysts in supercritical carbon dioxide. Selectivity to cinnamyl alcohol (COL) is enhanced as Pt0/Pt2+ ratio increases; namely, zero-valent metallic surface is beneficial to the formation of COL compared with less reduced surface. The influence of Pt0/Pt2+ ratio is more significant on the selectivity than on the total conversion. For the catalyst with small Pt0/Pt2+ value, the selectivity also depends on the degree of platinum dispersion. The selectivity to COL is higher for higher degree of platinum dispersion. The CO2 pressure did not affect the conversion and selectivity so much.  相似文献   

14.
The influence of La loading on Zr-Co/activated carbon (AC) catalysts has been studied for Fischer-Tropsch synthesis. The catalyst samples were characterized by XRD, TPR, CO-TPD, and temperature programmed CO hydrogenation. The catalytic property was evaluated in a fixed bed reactor. The experimental results showed that CO conversion increased from 86.4% to 92.3% and the selectivity to methane decreased from 14.2% to 11.5% and C5+ selectivity increased from 71.0% to 74.7% when low La loading (La = 0.2wt%) was added into the Zr-Co/AC catalyst. However, high loadings of La (La = 0.3-1.0 wt%) would decrease catalyst activity as well as the C5+ selectivity and increase methane selectivity. XRD results displayed that La-modified Zr-Co/AC catalyst had little effect on the dispersion of Co catalyst. But, the results of TPR, CO-TPD, and temperature programmed CO hydrogenation techniques indicated that the extent of cobalt reduction was found to greatly influence the activity and selectivity of the catalyst. The addition of a small amount of La increased the reducibility of the Zr-Co/AC catalyst and restrained the formation of methane and improved the selectivity to long chain hydrocarbons. However, excess of La led to the decrease of the reducibility of Co catalyst thus resulted in higher methanation activity.  相似文献   

15.
王豪杰  陈春  张海民  汪国忠  赵惠军 《催化学报》2018,39(10):1599-1607
生物质经催化转化合成燃料及化学品是当前研究的热点.目前,生物质的催化转化主要聚焦于纤维素、半纤维素和木质素的解聚及其下游产物合成.其中,乙酰丙酸(LA)作为纤维素解聚的主要产物之一,是一种极具竞争力的平台化合物和重要的生物质转化中间体.LA通过催化转化可以合成各类高附加值的化学品,例如,通过催化加氢LA可选择性合成γ-戊内酯(GVL).所合成的GVL用途广泛,可作为绿色溶剂、食品、燃料添加剂、(塑料、高分子、烃类或者其它高附加值化学品)前驱体等.目前,LA-to-GVL的研究主要着眼于非均相催化体系,包括负载型贵金属和非贵金属催化剂体.其中,贵金属催化剂主要有Ru,Au,Pd,Rh,Ir和Pt,虽然催化效率高,条件温和,但是成本高,难以实现工业化.此外对于广泛使用的Ru/C催化剂,存在金属-载体间相互作用不强.活性组分易流失、导致催化剂稳定性差等问题;而非贵金属则普遍存在催化活性不佳及反应条件苛刻等缺点.因此,开发高效、稳定、反应条件温和且具有工业化应用前景的非贵金属催化剂具有显著的研究意义,这也是当前的研究趋势.在特定温度下,金属离子与碳基底存在较强的相互作用.鉴于此,本文通过一步碳热还原法合成了活性炭负载的Ni3Fe双金属催化剂(Ni3Fe NPs@C).该催化剂在LA-to-GVL转化体系中展现了直接加氢(DH)和转移加氢(TH)双功能催化特性.首先,考察了其在DH体系中的反应特性:在130oC和2 MPa氢压反应条件下经2 h反应,LA转化率达到93.8%,GVL选择性为95.5%,GVL产率是相应的单金属Ni/C和Fe/C催化剂的6倍和40倍.此外,在TH催化反应体系中,在180oC,0.5 h和无外加氢源的反应条件下,以异丙醇为反应溶剂和供氢体,LA几乎完全转化为GVL,其反应效率同样相较于单金属Ni/C和Fe/C催化剂大幅度提高.所合成的Ni3Fe NPs@C双金属催化剂DH和TH催化性能优于绝大多数报道的LA加氢贵金属和非贵金属催化剂.而且,该催化剂具有良好的循环利用性能,经过四次循环,其结构和化学状态没有发生明显的改变,稳定性明显优于商业化的Ru/C催化剂.此外,通过系统分析其催化性能以及材料结构,明确了该催化剂在LA的DH和TH反应体系中的活性位点,并提出了可能的反应路径.该研究为其它类型的DH和TH反应体系以及生物质高效转化过程提供了新的催化剂设计思路.并且这种催化剂及其制备方法简单、绿色,易于工业化推广和应用.  相似文献   

16.
Silica, alumina, and activated carbon supported iron-cobalt catalysts were prepared by incipient wetness impregnation. These catalysts have been characterized by BET, X-ray diffraction (XRD), and temperature-programmed reduction (TPR). Activity and selectivity of iron-cobalt supported on different carriers for CO hydrogenation were studied under the conditions of 1.5 MPa, 493 K, 630 h-1, and H2/CO ratio of 1.6. The results indicate that the activity, C4 olefin/(C4 olefin C4 paraffin) ratio, and C5 olefin/(C5 olefin C5 paraffin) decrease in the order of Fe-Co/SiO2, Fe-Co/AC1, Fe-Co/Al2O3 and Fe-Co/AC2. The activity of Fe-Co/SiO2 reached a maximum. The results of TPR show that the Fe-Co/SiO2 catalyst is to some extent different. XRD patterns show that the Fe-Co/SiO2 catalyst differs significantly from the others; it has two diffraction peaks. The active spinel phase is correlated with the supports.  相似文献   

17.
MCM-41负载钴催化H_2O_2氧化四氢萘合成α-四氢萘酮   总被引:3,自引:1,他引:2  
比较了醋酸溶液中过渡金属(Fe、Co、Ni、Ce、Cu、La、Zr或Cr)掺杂MCM-41催化过氧化氢氧化四氢萘合成α-四氢萘酮的转化率和选择性,发现其中Co/MCM-41的催化活性最好。探讨了Co/MCM-41作催化剂时反应温度、反应时间、催化剂用量等对四氢萘氧化的转化率和形成四氢萘酮选择性的影响,确定了较优的反应条件:m(四氢萘)∶m(催化剂)=12.5∶1;反应温度T=383 K,反应时间8 h。四氢萘的转化率达94.7%,α-四氢萘酮的选择性达到70.3%。在反应体系中,Co/MCM-41是一种固体非均相催化剂。催化剂Co/MCM-41可回收重复使用3次,催化活性基本不变。  相似文献   

18.
IntroductionItilasbeenshot'-nthattileadditionofMnOpromotertoFocatal}stcanresultinaremarkableimprovementinthesclectivit}'to11ghtalkenesforCOh}!drogenationll'l.Ho-c'cvcr.thecadetofMnOonCH4formationandCOconversionisvery'ambigUouslltolMoreover.MnOpromotergrca…  相似文献   

19.
More Greasy, More Selective: Amine-capped Pt(3) Co nanocatalysts were synthesized and used for the hydrogenation of cinnamaldehyde (CAL). Capping the catalysts with amines that contain long carbon chains results in an ordered surface "array", in which high selectivity towards C?O hydrogenation can be achieved because the C?C bond in CAL does not interact with the surface. The longer the carbon chains in the amine, the higher the selectivity.  相似文献   

20.
Effect of promoters (Co, Fe, Sn, Zn) on structures, properties and catalytic performance of RuB/γ-Al2O3 catalyst was studied using in situ XRD, TEM, H2-TPD, XPS and liquid-phase hydrogenation of ethyl lactate to 1,2-propanediol (PDO). It was found that incorporation of Sn or Fe improved the dispersion and thermal stability of RuB. The electron density of Ru and the strength and capacity of H2 adsorption on the RuB catalyst were also enhanced by the incorporation of Sn or Fe. The incorporation of Co or Zn led to a significant decrease in H2 adsorption capacity of the RuB catalyst. Both ethyl lactate conversion and selectivity to 1,2-PDO increased with the incorporation of Sn or Fe. The ethyl lactate conversion decreased sharply with the incorporation of Zn or Co accompanied by an increase in selectivity to 1,2-PDO and lactic acid. The effect of promoters on reaction behavior was discussed on the basis of the characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号