首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An artificial solid electrolyte interface (SEI) of a graphene composite lithium salt can inhibit the growth of dendrites by driving the lithium deposition behavior on the surface of the lithium metal anode. The first-principle method was used to calculate the graphene/lithium nitride SEI, including the structural form and stability of intrinsic (G-Li3N), single-vacancy defect (SVG-Li3N), and double-vacancy defect (DVG-Li3N) graphene heterostructure. The adsorption and migration behavior of lithium ions on the heterostructure surface and the interface were also calculated. This study showed that the modification of double-vacancy defect graphene improved the stability of the heterostructure, and the adhesion work of the composite SEI is the highest. The modification of defective graphene increases the adsorption energy of lithium atoms on the surface and interface of the heterostructure: the strongest adsorption of Li atoms on the single-vacancy defect region of the heterostructure, the opposition migration pathway of Li atoms on the surface and interface of the DVG-Li3N heterostructure, and the decrease diffusion energy of Li atoms on the surface and interface of the DVG-Li3N heterostructure. A composite layered SEI of graphene and Li3N was constructed to inhibit dendritic growth by adjusting the deposition behavior of lithium atoms.  相似文献   

2.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

3.
High‐performance non‐noble electrocatalysts for oxygen reduction reaction (ORR) are the prerequisite for large‐scale utilization of fuel cells. Herein, a type of sandwiched‐like non‐noble electrocatalyst with highly dispersed FeNx active sites embedded in a hierarchically porous carbon/graphene heterostructure was fabricated using a bottom‐up strategy. The in situ ion substitution of Fe3+ in a nitrogen‐containing MOF (ZIF‐8) allows the Fe‐heteroatoms to be uniformly distributed in the MOF precursor, and the assembly of Fe‐doped ZIF‐8 nano‐crystals with graphene‐oxide and in situ reduction of graphene‐oxide afford a sandwiched‐like Fe‐doped ZIF‐8/graphene heterostructure. This type of heterostructure enables simultaneous optimization of FeNx active sites, architecture and interface properties for obtaining an electron‐catalyst after a one‐step carbonization. The synergistic effect of these factors render the resulting catalysts with excellent ORR activities. The half‐wave potential of 0.88 V vs. RHE outperforms most of the none‐noble metal catalyst and is comparable with the commercial Pt/C (20 wt %) catalyst. Apart from the high activity, this catalyst exhibits excellent durability and good methanol‐tolerance. Detailed investigations demonstrate that a moderate content of Fe dopants can effectively increase the intrinsic activities, and the hybridization of graphene can enhance the reaction kinetics of ORR. The strategy proposed in this work gives an inspiration towards developing efficient noble‐metal‐free electrocatalysts for ORR.  相似文献   

4.
We prepared a non‐covalently coupled hybrid of reduced graphene oxide (rGO)‐doped graphitic carbon nitride (g‐C3N4) by freezing‐assisted assembly and calcination. Fourier transform infrared, Raman and X‐ray photoelectron spectroscopies and transmission electron microscopy confirmed that rGO was incorporated into the bulk g‐C3N4, which was an ideal support for loading Pd nanoparticles. The Pd nanoparticles with an average size of 4.57 nm were uniformly dispersed on the rGO‐doped g‐C3N4 surface. The layered structure provided large contact area of g‐C3N4 with rGO, further accelerating the electron transfer rate and inhibiting electron–hole recombination. Consequently, compared with Pd/rGO/g‐C3N4 and Pd/g‐C3N4, the Pd/rGO‐doped g‐C3N4 showed a prominent catalytic activity for visible‐light‐driven photocatalytic Suzuki–Miyaura coupling at ambient temperature. The Pd/rGO‐doped g‐C3N4 exhibited very high stability after six consecutive cycles with minimal loss of catalytic activity.  相似文献   

5.
A green palladium (Pd)‐based catalyst supported on Rosa canina fruit extract‐modified graphene oxide [Pd nanoparticles (NPs)/reduced graphene oxide (RGO)‐Rosa canina] hybrid materials has been used as a recoverable and heterogeneous nanocatalyst for cyanating aryl halides using K4[Fe (CN)6] as the resource of cyanide. The nitriles were achieved in good to high yield, and the catalyst can be recovered and reused for up to seven cycles with no remarkable decrease in its catalytic activity.  相似文献   

6.
Taking advantageous of both g‐C3N4 and magnetic core‐shell hollow spheres, for the first time a heterogeneous and magnetically separable hybrid system was prepared through a novel and simple hydrothermal procedure and used for immobilization of bio‐synthesized Ag(0) nanoparticles. The hybrid system was fully characterized by using SEM/EDS, FTIR, VSM, TEM, XRD, TGA, DTGA, ICP‐AES, BET and elemental mapping analysis. The catalytic utility of the obtained system, h‐Fe2O3@SiO2/g‐C3N4/Ag, for promoting ultrasonic‐assisted A3, KA2 coupling reactions and [3 + 2] cycloaddition has been confirmed. The results established that the catalyst could efficiently catalyze the reaction to afford the corresponding products in high yields in short reaction times. The reusability study confirmed that the catalyst could be recovered and reused for at least five reaction runs with only slight loss of the catalytic activity. The hot filtration test also proved low silver leaching, indicating the heterogeneous nature of the catalysis.  相似文献   

7.
采用简单固相法成功制备了CeTiO4/g?C3N4?x(CTO/CN?x,x g为g?C3N4的添加量)复合材料,并通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、N2吸附-脱附测试、紫外可见吸收光谱(UV?Vis)及电化学测试对材料进行表征。研究发现:CeTiO4与g?C3N4层状纳米片紧密复合,并成功构建了界面异质结结构;形成CTO/CN?x复合相的光催化材料具有良好的可见光光响应性能,且光生空穴-电子对的分离和迁移率明显提高;通过太阳光模拟不同样品光催化降解有机污染物罗丹明B,降解140 min后复合材料CTO/CN?6表现出最高的光催化活性,反应速率常数为0.0202 min-1。其活性增强的主要原因是异质结结构的构筑降低了CTO光生载流子的复合几率,提高了光生载流子的迁移速率。  相似文献   

8.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   

9.
石墨氮化碳(g?C3N4)是一种窄带隙的n型半导体材料,具有可见光降解有机污染物能力;凹凸棒土(ATP)具有很强的表面活性和吸附能力,可作为催化剂的载体。我们以g?C3N4和ATP杂化材料(ATP/g?C3N4)为基础,通过简单的化学还原法将纳米Pt颗粒沉积到ATP/g?C3N4表面,随后利用纳米金属Pt颗粒催化苯胺无电聚合,促使聚苯胺(PANI)在ATP/g?C3N4表面或孔道中原位生成,获得ATP/g?C3N4?Pt/PANI复合材料。以阴离子染料甲基橙(MO)为模型体系,考察了复合材料的可见光催化性能。研究表明,共轭结构的PANI和g?C3N4在复合材料中保持完好,说明其具有良好的兼容性。由于多组分材料之间的协同效应,使得ATP/g?C3N4?Pt/PANI纳米复合材料具有卓越的光催化性能。可见光光照80 min后,对20 mg·L-1 MO溶液的降解率达96.3%,而且循环5次后,其降解率仍保持在93.5%。  相似文献   

10.
In this work, a new heterogeneous catalyst (SBA‐15/Im/WO42?) was prepared, and then its performance in the oxidation of organic sulfides was studied (using 30% H2O2 as green oxidant under neutral reaction conditions). This organic–inorganic hybrid mesoporous material was characterized by various techniques, such as FT‐IR, inductively coupled plasma, X‐ray powder diffraction, high‐resolution‐transmission electron microscopy, N2 adsorption–desorption and thermogravimetric analysis. The catalyst was also applied to the selective oxidation of various sulfides. The hybrid catalyst was easily recovered, and was very stable and retained good activity for at least five successive runs without any additional activation. Moreover, there was no remarkable decrease in the activity and selectivity of the catalyst. The products could be easily isolated by just removing the solvent after filtering the catalyst. The yields of the catalytic productions through this catalyst were in the range from 75% to 97%.  相似文献   

11.
A heterogeneous catalyst (HPW/mpg‐C3N4) for the alkylation of o‐xylene and styrene reaction was acquired by the immobilization of phosphotungstic acid (HPW) on mesoporous graphitic carbon nitride (mpg‐C3N4) through electrostatic interaction. The results of Fourier transform infrared spectroscopy (FT‐IR), X‐ray powder diffraction (XRD), X‐ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) proved that HPW was successfully immobilized on the protonated mpg‐C3N4 by electrostatic interaction. The textural properties and morphology of HPW/mpg‐C3N4 were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM). Among them, 40% HPW/mpg‐C3N4 displays the best catalytic performance in the alkylation reaction with 91.8% yield and 96.5% selectivity to 1, 2‐diphenylethylane. Moreover, protonated mpg‐C3N4 not only displays as a support to facilitate great dispersion of HPW but also promotes the alkylation product diffusion effectively. Besides, the HPW/mpg‐C3N4 catalyst could be recycled easily without significant loss of catalytic activity, which is demonstrate by the recyclability of HPW/mpg‐C3N4 catalyst test.  相似文献   

12.
A new heterogeneous catalyst for the epoxidation of olefins was prepared by immobilization of peroxophosphotungstate anions on the surface of clicked magnetite‐graphene oxide as magnetically recoverable support. To prepare the heterogeneous catalyst, the clicked magnetite‐graphene oxide support was prepared by thiolene click reaction of thiol functionalized graphene oxide with vinyl modified magnetite nanoparticles. The tailored support was then modified with aminopropyl groups followed by electrostatic interaction with peroxophosphotungstate anions to achieve the desired heterogeneous catalyst. Characterization of the catalyst was performed by various physicochemical methods which confirmed the successful immobilization of peroxopolyoxotungstate species on the surface of clicked magnetite‐graphene oxide. Catalytic activity of the catalyst revealed its high catalytic activity and selectivity in the epoxidation of various olefins in the presence of H2O2 as green oxidant. This heterogeneous catalyst can be magnetically reused several times without significant loss of activity and selectivity.  相似文献   

13.
Effective epoxidation of alkenes using sodium periodate was accomplished with Manganese (III) tetrakis(p-sulfonatophenyl)porphyrin, [C44H26N4O12S4Na4], supported on ionic liquids-modified silica, Im-SiO2, under ultrasonic irradiation conditions is reported. This heterogeneous catalyst, [Mn(TPPS)@SiO2-Im] was characterized by elemental analysis, scanning electron microscopy (SEM), FT-IR and UV–Vis spectroscopic methods. The synthesized hybrid catalyst was applied for efficient epoxidation of various alkenes with sodium periodate in acetonitrile under ultrasonic irradiation conditions. This solid catalyst can be easily recovered by simple filtration and reused several time without apparent loss of its catalytic activity.  相似文献   

14.
A novel approach was achieved for growing citric acid towards polymer-like graphene quantum dots (PGQD) with high efficiency in the presence of sodium hydroxide as a base catalyst. This protocol is completely safe, simple, fast, and efficient by a bottom up strategy. Thermal treatment of a mixture containing citric acid with NaOH at 300 °C gave PGQD during 5 min. The reaction afforded a new heterogeneous catalyst, Pd/PdO/Fe3O4@PGQD, in the presence of Pd and Fe3O4. The magnetically recoverable catalyst showed high activity in the oxidation of alkylarenes and alcohols using H2O2 as a green oxidant at room temperature. Comparison of the results with previous reports showed the efficiency of the catalyst to have high turnover numbers in mild reaction conditions.  相似文献   

15.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

16.
A facile, green and efficient method for the immobilization of MoO2–Salen onto graphene hybridized with glucose‐coated magnetic Fe3O4 nanoparticles is proposed to fabricate a magnetic organic–inorganic hybrid heterogeneous RGO/Fe3O4@C‐Salen‐MoO2 catalyst for the epoxidation of cyclooctene and geraniol using tert ‐butyl hydroperoxide or H2O2 as oxidant. Carbon‐coated Fe3O4 can improve the stability and add functional ─OH groups on the surface of Fe3O4. The fabricated composite exhibited good performance due to good dispersion of MoO2–Salen active sites. The catalyst can be easily separated from the reaction system using a permanent magnet and used three times without significantly losing its catalytic activity and selectivity.  相似文献   

17.
The growing concern about the potentially adverse effects of the production of chemical compounds on the sustainable development of the environment has led to a great deal of efforts to search for low‐cost and environmentally friendly catalytic systems. A pyrene‐tagged N‐heterocyclic carbene palladacycle complex ([Pd{(C,N)C6H4CH2NH(Et)}(Imd‐P)Br]) was prepared by reacting imidazolium salt with dimer ([Pd2{(C,N)C6H4CH2NH(Et)}2(μ‐OAc)2]). Then, it was immobilized onto the surface of reduced graphene oxide (rGO) via π–π stacking forces. The hybrid compound ((NHC)Pd‐rGO) was made in a one‐step process. Various techniques were employed to characterize the compound. In addition, computational studies were used to verify the interaction between the Pd complex and rGO. The catalytic activity of the molecular complex and hybrid material was evaluated in both Suzuki–Miyaura cross‐coupling reactions and reduction of p‐nitrophenol to p‐aminophenol. The catalytic activity of the hybrid material was enhanced in comparison with the corresponding homogeneous analogue. Thus, rGO seems to play a significant role in catalytic activity. Hot filtration experiments show the heterogeneous nature of the catalyst resulting from the strong interaction between pyrene and graphene. The hybrid (NHC)Pd‐rGO material could be recycled up to six times with no decrease in catalytic activity.  相似文献   

18.

Nickel oxide (NiO) nanosheets (NSs) deposited on different amounts (0.025, 0.05, 0.1, and 0.2 wt%) of reduced graphene oxide (rGO) are synthesized through hydrothermal method. The NiO NSs on rGO (rGO-NiO) are characterized by using X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) analyses, and electrochemical analysis. Electrocatalytic activity of rGO-NiO nanocomposite modified glassy carbon (GC/rGO-NiO) electrode is examined towards electrocatalytic oxidation of urea in 0.1 M NaOH using cyclic voltammetry and amperometry techniques. The GC/rGO0.1-NiO nanocomposite modified electrode shows enhanced electrocatalytic oxidation of urea than that of other modified electrodes due to the incorporation of NiO NSs on an optimum amount of rGO. The GC/rGO0.1-NiO modified electrode is used for designing electrochemical sensor for urea, and the detection limit is estimated as 0.47 μM using the amperometry technique. The sensitivity of GC/rGO0.1-NiO modified electrode is found to be 2450 μA mM−1 cm−2. In addition to good electroanalytical performance, the present urea sensor displayed good stability and acceptable anti-interference ability in the presence of 20-fold excess concentration of relevant interferents. The GC/rGO0.1-NiO nanocomposite modified electrode is successfully used for the determination of urea in water sample.

Schematic representation of electrocatalytic oxidation of urea at GC/rGO-NiO nanocomposite modified electrode.

  相似文献   

19.
A highly porous metal‐organic framework, MIL‐101(Fe), was prepared by a solvothermal method in the presence of amino‐modified Fe3O4@SiO2 nanoparticles, in order to achieve Fe3O4/MIL‐101(Fe) nanocomposite, which was characterized by XRD, FT‐IR, SEM, TEM, BET, and VSM. This hybrid magnetic nanocomposite was employed as heterogeneous catalyst for α‐amino nitriles synthesis through three‐component condensation reaction of aldehydes (ketones), amines, and trimethylsilyl cyanide in EtOH, at room temperature. The recoverability and reusability was admitted for the heterogeneous magnetic catalyst; no significant reduction of catalytic activity was observed even after five consecutive reaction cycles.  相似文献   

20.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号