首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Vancomycin, the prototypical member of the glycopeptide family of antibiotics, is a clinically used antibiotic employed against a variety of drug-resistant bacterial strains including methicillin-resistant Staphylococcus aureus (MRSA). The recent emergence of vancomycin resistance, viewed as a growing threat to public health, prompted us to initiate a program aimed at restoring the potency of this important antibiotic through chemical manipulation of the vancomycin structure. Herein, we describe the development of synthetic technology based on the design of a novel selenium safety catch linker, application of this technology to a solid-phase semisynthesis of vancomycin, and the solid- and solution-phase synthesis of vancomycin libraries. Biological evaluation of these compound libraries led to the identification of a number of in vitro highly potent antibacterial agents effective against vancomycin-resistant bacteria. In addition to aiding these investigations, the solid-phase chemistry described herein is expected to enhance the power of combinatorial chemistry and facilitate chemical biology and medicinal chemistry studies.  相似文献   

2.
Until recently, repetitive solid-phase synthesis procedures were used predominantly for the preparation of oligomers such as peptides, oligosaccharides, peptoids, oligocarbamates, peptide vinylogues, oligomers of pyrrolin-4-one, peptide phosphates, and peptide nucleic acids. However, the oligomers thus produced have a limited range of possible backbone structures due to the restricted number of building blocks and synthetic techniques available. Biologically active compounds of this type are generally not suitable as therapeutic agents but can serve as lead structures for optimization. “Combinatorial organic synthesis” has been developed with the aim of obtaining low molecular weight compounds by pathways other than those of oligomer synthesis. This concept was first described in 1971 by Ugi.[56f,g,59c] Combinatorial synthesis offers new strategies for preparing diverse molecules, which can then be screened to provide lead structures. Combinatorial chemistry is compatible with both solution-phase and solid-phase synthesis. Moreover, this approach is conducive to automation, as proven by recent successes in the synthesis of peptide libraries. These developments have led to a renaissance in solid-phase organic synthesis (SPOS), which has been in use since the 1970s. Fully automated combinatorial chemistry relies not only on the testing and optimization of known chemical reactions on solid supports, but also on the development of highly efficient techniques for simultaneous multiple syntheses. Almost all of the standard reactions in organic chemistry can be carried out using suitable supports, anchors, and protecting groups with all the advantages of solid-phase synthesis, which until now have been exploited only sporadically by synthetic organic chemists. Among the reported organic reactions developed on solid supports are Diels–Alder reactions, 1,3-dipolar cycloadditions, Wittig and Wittig–Horner reactions, Michael additions, oxidations, reductions, and Pd-catalyzed C? C bond formation. In this article we present a comprehensive review of the previously published solid-phase syntheses of nonpeptidic organic compounds.  相似文献   

3.
Since Gomberg's discovery of radicals as chemical entities, the interest around them has increased through the years. Nowadays, radical chemistry is used in the synthesis of 75% of all polymers, inevitably establishing a close relationship with Solid-Phase Organic Synthesis. More recently, the interest of organic chemists has shifted towards the application of usual "in-solution" radical chemistry to the solid-phase, ranging from the use of supported reagents for radical reactions, to the development of methodologies for the synthesis of small molecules or potential libraries. The aim of this review is to put in perspective radical chemistry, moving it away from its origin as a synthetic means for solid supports, to becoming a useful tool for the synthesis of small molecules.  相似文献   

4.
The automation of all aspects of manual solution-phase synthesis into one integrated, efficient, and reliable system could be regarded as something of an unmet challenge in organic chemistry. The requirements for modern solution-phase libraries in mainstream drug discovery is typically 50-250 high-purity compounds on a 10-100-mg scale, whether for target class libraries or lead optimization, and short cycle time in combination with high capacity is critical. To achieve these goals, in a codevelopment between Aventis and Accelab GmbH, Kusterdingen, Germany, we designed a completely novel system of independent workstations connected by a shuttle transfer system produced by Montech, Derendingen, Switzerland. Seven modular workstations process four reactions on each shuttle in parallel, with the ability to perform synthesis (temperature control and liquid reagent handling), filtration, liquid-liquid extraction, evaporation, weighing, solid-phase extraction, and HPLC/MS analysis. The modular design enables the continuous loading of shuttles at any time, and each shuttle can have its own workflow. The design also allows easy expansion for future needs. The result is a combination of high flexibility and high throughput.  相似文献   

5.
One should not underestimate the capability of the combinatorial method in solid-state chemistry; this is the opinion of the author. Combinatorial chemistry can provide a large number of new compounds, but once the components that are interesting for a certain application have been successfully selected, the techniques of conventional catalysis and materials research are required. The strengths of conventional chemistry lie in the optimization, systematic modification, and improvement of new lead structures. In contrast, discovery is the potential strength of combinatorial chemistry. Careful design is most important for the synthesis of useful libraries, since the diversity of the periodic table is much too large to be accessed comprehensively or systematically by such large libraries.  相似文献   

6.
Microwave irradiation has been successfully applied in organic chemistry. Spectacular accelerations, higher yields under milder reaction conditions and higher product purities have all been reported. Indeed, a number of authors have described success in reactions that do not occur under conventional heating and modifications in selectivity (chemo-, regio- and stereoselectivity) have even been reported. Recent advances in microwave-assisted combinatorial chemistry include high-speed solid-phase and polymer-supported organic synthesis, rapid parallel synthesis of compound libraries, and library generation by automated sequential microwave irradiation. In addition, new instrumentation for high-throughput microwave-assisted synthesis continues to be developed at a steady pace. The impressive speed combined with the unmatched control over reaction parameters justifies the growing interest in this application of microwave heating. In this review we highlight our recent advances in this area, with a particular emphasis on cycloaddition reactions of heterocyclic compounds both with and without supports, applications in supramolecular chemistry and the reproducibility and scalability of organic reactions involving the use of microwave irradiation techniques.  相似文献   

7.
Combinatorial chemistry has deeply impacted the drug discovery process by accelerating the synthesis and screening of large numbers of compounds having therapeutic and/or diagnostic potential. These techniques offer unique enhancement in the potential identification of new and/or therapeutic candidates. Our efforts over the past 10 years in the design and diversity-oriented synthesis of low molecular weight acyclic and heterocyclic combinatorial libraries derived from amino acids, peptides, and/or peptidomimetics are described. Employing a "toolbox" of various chemical transformations, including alkylation, oxidation, reduction, acylation, and the use of a variety of multifunctional reagents, the "libraries from libraries" concept has enabled the continued development of an ever-expanding, structurally varied series of organic chemical libraries.  相似文献   

8.
《Tetrahedron》2003,59(10):1797-1804
A general methodology has been evaluated for the preparation and optimization and fine-tuning of polymer-supported chiral catalysts for the ZnEt2 addition to benzaldehyde. This approach involves the use of parallel solid-phase chemistry and the use of cheap and easily available chiral starting materials, such as amino acids. In this way, small, focused polymer-supported libraries of α,α-substituted amino alcohols have been prepared and evaluated as chiral ligands for the above-mentioned catalytic reaction. This strategy allows for an easy and fast way to analyze the different factors affecting the efficiency of the supported species (including the polymeric network itself) and to improve the tuning of the chiral catalysts. For the cases studied, amino alcohols containing aliphatic α-substituents have been shown to give good results when in conjunction with both aliphatic side chains at the β position and a N-methyl substituent.  相似文献   

9.
The generation of diverse chemical libraries using the "libraries from libraries" concept by combining solid-phase and solution-phase methods is described. The central features of the approaches presented are the use of solid-phase synthesis methods for the generation of a combinatorial polyamine library. Following cleavage from the resin with HF, the polyamine library was reacted with ethyl nitrite in the solution phase to yield the desired nitrosamine library in good yield and purity. The approaches described enable the efficient syntheses of individual nitrosamines as well as mixture-based nitrosamine libraries.  相似文献   

10.
组合化学、分子库与新药研究   总被引:6,自引:1,他引:5  
刘刚  恽榴红  王建新 《化学进展》1997,9(3):223-228
组合化学是进入90 年代以来寻找及优化新药先导化合物的主要研究方法, 其特点是改变了传统的逐一合成、逐一纯化、逐一筛选的模式, 而是以合成和筛选化学库的形式完成寻找及优化药物先导化合物, 极大地加快了药物先导化合物出现的速度。本文就目前有关组合化学研究的基本理论、基本方法、发展趋势、研究成果以及我国应当采取的措施进行了综述。  相似文献   

11.
Mass spectrometry is a powerful analytical tool allowing rapid and sensitive structural elucidation of a wide range of molecules issued from solution-, solid- and liquid-phase syntheses. Therefore, mass spectrometry has become the most widely used tool to probe combinatorial libraries. A significant portion of the reported combinatorial data are being produced using solid phase organic synthesis. In contrast to indirect strategies where the tethered structures were released from the support into solution to undergo standard mass spectrometric analyses, static - secondary ion mass spectrometry (S-SIMS) has enabled the identification of support-bound molecules without any chemical treatment of the resin bead. Such non-destructive characterization was applied at the bead level and facilitated the step-by-step monitoring of solid-phase peptide syntheses. Side-reactions were also detected. The relevance of S-SIMS in the rehearsal phase of combinatorial chemistry is demonstrated by comparison with infrared and nuclear magnetic resonance (NMR) spectroscopies, the two other techniques investigated in that field. An alternative to solid-phase synthesis consists of assembling molecules on a soluble polymer. This methodology is termed liquid-phase synthesis. Compound characterization is facilitated since the derivatized support is soluble in spectroscopic solvents used in NMR or in electrospray ionization mass spectrometry. The advantages and drawbacks of this approach will be discussed in terms of the direct monitoring of supported reactions during chemistry optimization and rehearsal library validation.  相似文献   

12.
A new inexpensive and practical apparatus for solid-phase chemistry and parallel synthesis is described. This new apparatus fills an important void in the availability of portable tools for the synthesis of libraries of compounds in multi-milligram amounts. Individual reaction tube capacities range in size from 4 mL to 500 mL of operating liquid volume. Reaction blocks of 36 tubes x 4 mL or 24 tubes x 150 mL allow flexibility of operation. Insert tubes with frit ends function as filter sticks for resin wash and for maintenance of inert atmosphere. An electronic controller device connects to the reaction tubes for programmable entry of pulses of inert gas for resin mixing or vacuum for resin wash. The utility of this apparatus is illustrated by the synthesis of libraries based on 4-methaneamine imidazoles.  相似文献   

13.
A series of N-alpha-mercaptoacetyl containing dipeptides have been prepared on solid-phase supports as putative matrix metalloprotease (MMP) inhibitors. Inhibitor design was based on a positional scanning approach of the amino acids present within a template molecule, previously shown to be an MMP inhibitor with good pharmacological characteristics. This study is the first step in a unique programme, designed to expand the repertoire of molecular templates which can be chosen as starting points for the development of more focused parallel and/or combinatorial libraries of MMP inhibitors as a means to accelerate the lead discovery process. This paper reports the success of such an approach in the development of agents with activity against a number of pathologically important MMPs. After screening of these positional scanning libraries, we have obtained important SAR information, in particular, pharmacophores with the ability to impart selectivity for particular MMP species.  相似文献   

14.
The generation of novel structures amenable to rapid and efficient lead optimization comprises an emerging strategy for success in modern drug discovery. Small molecule libraries of sufficient size and diversity to increase the chances of discovery of novel structures make the high throughput synthesis approach the method of choice for lead generation. Despite an industry trend for smaller, more focused libraries, the need to generate novel lead structures makes larger libraries a necessary strategy. For libraries of a several thousand or more members, solid phase synthesis approaches are the most suitable. While the technology and chemistry necessary for small molecule library synthesis continue to advance, success in lead generation requires rigorous consideration in the library design process to ensure the synthesis of molecules possessing the proper characteristics for subsequent lead optimization. Without proper selection of library templates and building blocks, solid phase synthesis methods often generate molecules which are too heavy, too lipophilic and too complex to be useful for lead optimization. The appropriate filtering of virtual library designs with multiple computational tools allows the generation of information-rich libraries within a drug-like molecular property space. An understanding of the hit-to-lead process provides a practical guide to molecular design characteristics. Examples of leads generated from library approaches also provide a benchmarking of successes as well as aspects for continued development of library design practices.  相似文献   

15.
Macrocycle has attracted the attention of many researchers in the field of medicinal chemistry due to its unique advantages and good prospects, but the difficulties in drug design and synthesis of macrocycle limit its applications. In this study, a series of macrocyclic derivatives designed from anaplastic lymphoma kinase (ALK) inhibitor lorlatinib were synthesized as Janus kinase 2 (JAK2) selective inhibitors. Among them, 17f had the best inhibitory activity (IC50 = 0.177 μmol·L–1) and selectivity for JAK2 over JAK1 and JAK3, which indicated that design of the macrocyclic derivatives might be a feasible strategy for the discovery of novel selective JAK2 inhibitors.  相似文献   

16.
Over the past 15 years the privileged structure concept has emerged as a fruitful approach to the discovery of novel biologically active molecules. Privileged structures are molecular scaffolds with versatile binding properties, such that a single scaffold is able to provide potent and selective ligands for a range of different biological targets through modification of functional groups. In addition, privileged structures typically exhibit good drug-like properties, which in turn leads to more drug-like compound libraries and leads. The net result is the production of high quality leads that provide a solid foundation for further development. The identification of privileged structures will be discussed, emphasizing the importance of understanding the structure-target relationships that confer "privileged" status. This understanding allows privileged structure based libraries to be targeted at distinct target families (e.g. GPCRs, LGIC, enzymes/kinases). Privileged structures have been successfully exploited across and within different target families and promises to be an effective approach to the discovery and optimization of novel bioactive molecules. The application of the privileged structure approach, both in traditional medicinal chemistry and in the design of focused libraries, will be discussed with the aid of illustrative examples.  相似文献   

17.
Accurate results for the testing of combinatorial libraries necessitates high purity of the library members. Therefore, combinatorial libraries derived from a combinatorial solution or solid-phase synthesis often require the purification of compounds that do not achieve a certain purity threshold. This study describes that preparative high-performance liquid chromatography (HPLC)-mass spectrometry (MS) is the method of choice for the purification of large arrays of diverse compounds. The adoption of this technology to the workflow of a solution phase combinatorial chemistry laboratory producing more than 20,000 compounds per year is described. Furthermore, the setup and logistics are discussed as well as the purity achievable for large libraries. Efficiency, speed, quality, and universality of preparative HPLC-MS are presented in detail for a library of 140 compounds, including data logistics and downstream processes as well.  相似文献   

18.
Within last decade, many pyrimidinyl oxy substituted alcohols, aldehydes and carboxylic derivatives had been found with prominent bio-activities such as high herbicidal activities with wide spectrum. After extensively study of the relationship between structures and bioactivities, A brand-new scaffold combining both pyrimidinyl and glucoside moieties was designed and other building blocks were further introduced with the help of polymer-supported regioselective protecting groups. As shown below, a combinatorial synthesis was carried out by applying "mix-split" method to produce the following series of small compounds libraries both in solid-phase and liquid phase.  相似文献   

19.
[reaction: see text] A novel organoplatinum(II) biomarker is introduced to facilitate the solid-phase screening of combinatorial libraries for substrates and inhibitors of enzymes and receptors. The robust organoplatinum(II) biomarker can be incorporated, on amine functions, in peptides using standard peptide coupling techniques. The chemistry, stability, and (reversible) coloration process with KI(3) of the organoplatinum(II) biomarker was investigated.  相似文献   

20.
The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号