首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using HPGe detectors, the K X-rays and prompt gamma-rays below 200 keV from Ru, Rh, Pd, Ag, Re, Os, Ir, Pt and Au were measured under bombardment with protons from 1.8 to 5.4 MeV. Excitation functions for analytically important gamma-rays were determined. Interference-free sensitivities were calculated and the method was tested by the analysis of standard dental alloys.  相似文献   

2.
The parameters for the determination of noble metals by atomic absorption technique are optimized by minimizing of the coeffizients of variation. The optimal conditions for the determination of the elements Ag, Au, Ir, Pd, Pt, Rh and Ru are given.  相似文献   

3.
The parameters for the determination of noble metals by atomic absorption technique are optimized by minimizing of the coeffizients of variation. The optimal conditions for the determination of the elements Ag, Au, Ir, Pd, Pt, Rh and Ru are given.  相似文献   

4.
    
Zusammenfassung Die Bedingungen für die atomabsorptions-spektroskopische Bestimmung von Edelmetallen werden über die Minimierung der Variationskoeffizienten der Meßwerte optimiert. Die optimalen Meßbedingungen für die Bestimmung der Elemente Ag, Au, Ir, Pd, Pt, Rh und Ru werden gegeben.
Optimizing of measuring conditions for the determination of noble metals by atomic absorption spectrometry
The parameters for the determination of noble metals by atomic absorption technique are optimized by minimizing of the coeffizients of variation. The optimal conditions for the determination of the elements Ag, Au, Ir, Pd, Pt, Rh and Ru are given.
  相似文献   

5.
Solutions of Rh2(OAc)4 and Et4N[Cp*Ir(CN)3] react to afford crystals of the one-dimensional coordination solid [Et4N[Cp*Ir(CN)3][Rh2(OAc)4]]. This reaction is reversed by coordinating solvents such as MeCN. The structure of the polymer consists of helical anionic chains containing Rh2(OAc)4 units linked via two of the three CN ligands of Cp*Ir(CN)3-. Use of the more Lewis acidic Rh2(O2CCF3)4 in place of Rh2(OAc)4 gave purple [(Et4N)2[Cp*Ir(CN)3]2[Rh2(O2CCF3)4]3], whose insolubility is attributed to stronger Rh-NC bonds as well as the presence of cross-linking. The species [[Cp*Rh(CN)3][Ni(en)n](PF6)] (n = 2, 3) crystallized from an aqueous solution of Et4N[Cp*Rh(CN)3] and [Ni(en)3](PF6)2; [[Cp*Rh(CN)3][Ni(en)2](PF6)] consists of helical chains based on cis-Ni(en)(2)2+ units. Aqueous solutions of Et4N[Cp*Ir(CN)3] and AgNO3 afforded the colorless solid Ag-[Cp*Ir(CN)3]. Recrystallization of this polymer from pyridine gave the hemipyridine adduct [Ag[Ag(py)][Cp*Ir(CN)3]2]. The 13C cross-polarization magic-angle spinning NMR spectrum of the pyridine derivative reveals two distinct Cp* groups, while in the pyridine-free precursor, the Cp*'s appear equivalent. The solid-state structure of [Ag[Ag(py)][Cp*Ir(CN)3]2] reveals a three-dimensional coordination polymer consisting of chains of Cp*Ir(CN)3- units linked to alternating Ag+ and Ag(py)+ units. The network structure arises by the linking of these helices through the third cyanide group on each Ir center.  相似文献   

6.
The use of a multi-element high-intensity hollow-cathode lamp with selective modulation and a 2-MHz ultrasonic nebulizer for the determination of Au, Pt, Pd and Rh by atomic absorption spectroscopy is described. The sensitivities for the various elements in aqueous and organic media were studied. Only some organic solutions could be nebulized satisfactorily; a solution containing 95% acetone proved to be the best. For aqueous solutions, the detection limits (concn. giving 0.004 O.D.) were as follows: Au, 0.03 p.p.m.; Pd, 0.02 p.p.m.; Pt. 0.3 p.p.m.; and Rh, 0.09 p.p.m. For a 95% acetone solution the detection limits were: Au, 0.009 p.p.m.; Pd, 0.012 p.p.m.; Pt, 0.20 p.p.m. and Rh, 0.06 p.p.m. The coefficients of variation for aqueous and organic media were satisfactory.  相似文献   

7.
High-entropy alloys (HEAs) are near-equimolar alloys comprising five or more elements. In recent years, catalysis using HEAs has attracted considerable attention across various fields. Herein, we demonstrate the facile synthesis of nanoporous ultra-high-entropy alloys (np-UHEAs) with hierarchical porosity via dealloying. These np-UHEAs contain up to 14 elements, namely, Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti. Furthermore, they exhibit high catalytic activities and electrochemical stabilities in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic media, superior to that of commercial Pt/graphene and IrO2 catalysts. Our results offer valuable insights for the selection of elements as catalysts for various applications.

Nanoporous ultra-high-entropy alloys containing 14 elements (Al, Ag, Au, Co, Cu, Fe, Ir, Mo, Ni, Pd, Pt, Rh, Ru, and Ti) were obtained by dealloying. The products showed excellent electrocatalytic performance for water splitting in acidic media.  相似文献   

8.
Donaldson EM 《Talanta》1976,23(6):411-416
The chloroform extraction of 32 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, Pb, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Ce, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Os) from O.1-10M hydrochloric acid media in the presence of potassium ethyl xanthate has been studied. The oxidation states in which some elements react, and potential analytical separations, are discussed. Pd(II), As(III) and Se(IV) are completely extracted as ethyl xanthate complexes, Te(IV) is almost completely extracted, and Au(III) is largely extracted over the range of acid concentration investigated. Mn(II), Zn, Rh(III), Ir(IV), Ru(III), Os(IV), Cr(III), Cr(VI), Ce(III) and Ce(IV) are not extracted. Ge is partly extracted from 6-10M media as the chloro-complex. Depending on the acid concentration, the remaining elements are all partially extracted as xanthate complexes.  相似文献   

9.
The size and form of metallic nanoparticles (NPs) significantly affects their adsorptive, chemical, and catalytic activity. One of the most interesting nanoscale size effects is the transition from icosahedral to octahedral forms with growth in the NP size. We compared the stability of icosahedral, decahedral and cuboctahedral NPs made from eight metals Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au using the local optimization of total energy, which was computed from the tight-binding second moment approximation and quantum Sutton–Chen potentials. The obtained results predicted that the icosahedral form would be most stable for Ni, and least stable for Au. For Rh, and especially for Ir, a strong dependency of the stability of the different forms on the NP size was revealed.  相似文献   

10.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

11.
The title phases were synthesized via high-temperature reactions of the elements in welded Ta tubes and characterized by single-crystal X-ray diffraction methods and band calculations. BaIrIn4 adopts the LaCoAl4-type structure: Pmma, Z = 2, a = 8.642(2), b = 4.396(1), and c = 7.906(2) A. Ba2Ir4In13 exhibits a new structure type: Cmc2(1), Z = 4, a = 4.4856(9), b = 29.052(6), and c = 13.687(3) A. BaIrIn4 is constructed from a single basic unit, a Ba-centered pentagonal prism of indium on which two adjacent and the opposed rectangular faces are capped by In and Ir, respectively. The three capping atoms are coplanar with Ba and represent the only augmentation of the pentagonal prism. The relatively large proportions of Ba:Ir, In, and of In:Ir lead to the condensation of homoatomic pentagonal prisms into zigzag chains through the sharing of the two uncapped faces. The cation proportion is much lower in Ba2Ir4In13, and Ba atoms are surrounded by a more anionic Ir/In network without any condensation between prisms. This and the greater Ir proportion lead to a network of formal augmented pentagonal Ba@Ir5In15 and hexagonal Ba@Ir7In15 prisms with overall 5-10-5 and 6-10-6 arrangements of parallel planar rings, respectively, although most Ir is not well bound to the prisms. The latter prism, with alternating Ir/In atoms in the basal faces, is novel for Ae-T-In phases (Ae = alkaline-earth metal, T = Co, Rh, Ir). Band structure calculation results (linear-muffin-tin-orbital method in the atomic sphere approximation) emphasize the greater overlap populations (approximately strengths) of the Ir-In bonds and confirm expectations that both compounds are metallic. The Ir 5d bands are narrower and lie higher in energy than those for Au in analogous phases.  相似文献   

12.
Extraction of platinum group metals and gold from hydrochloric acid solutions with calix[4]arenamines (CAA) and calix[n]arene thioethers (n = 4, 6; CTE) was studied. The high macrocyclic effects (102–103) are due to chelation between metals and the donor centers of macrocycles in the systems CAA-Pd and CTE-Ag, PtII, and PtIV. New CAA-based extracting systems for collective extraction of Pd, Pt, Au, Ir, and Rh and new CTE-based systems for separation of Au and Pd from Ag and Pt were justified.  相似文献   

13.
Summary The extraction of the elements Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb and Bi from hydrochloric acid into methyl isobutyl ketone has been studied as a function of hydrochloric acid concentration. The results are presented in graphical form. The data were obtained by studying the distribution patterns of the elements after equilibration on a Craig countercurrent liquid-liquid extraction apparatus.
Zusammenfassung Die Extraktion der Elemente Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb und Bi mit Methylisobutylketon aus salzsaurer Lösung als Funktion der Säurekonzentration wurde studiert. Die Ergebnisse wurden aus den Spitzen der Verteilungskurven nach Einstellung des Gleichgewichts in einem diskontinuierlichen Gegenstrom-flüssig-flüssig-Extraktionsapparat berechnet.

Résumé On a étudié l'extraction des éléments Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Ga, As, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, La, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb et Bi en solution chlorhydrique par la méthylisobutylcétone. On présente les résultats sous forme graphique. Les données ont été obtenues en étudiant les diagrammes de distribution des éléments après équilibrage sur un appareil Craig à extraction à contre-courant liquide-liquide.
  相似文献   

14.
A method for determining Au, Pt, Pd, Ir and Rh in ores and silicates and Fe-formation rocks is described. Sample decomposition was carried out with aqua regia and HF, followed by fusion of any insoluble residue with Na22O2 in a glassycarbon crucible. The precious metals were separated, in 1.2 mol dm−3 HCl media, from the matrix elements by ion-exchange, using a mini-column with tetraethylenepentamine (metalfix-chelamine) resin. The resin was destroyed with HNO3 and H2O2 in a high-pressure vessel assisted by microwave heating, and the precious elements were determined by flow-injection inductively coupled plasma mass spectrometry. The sample treatment, optimization of analytical variables and measurable concentration levels are discussed. The limits of quantification (10 sdn − 1) calculated from a procedural blank sample solution were 4.0, 2.0, 1.5, 0.8 and 0.5 ng g−1 for Au, Pt, Pd, Ir and Rh, respectively. The accuracy of the proposed method was tested by determining these elements in SARM 7 platinum-ore reference material. For all the analytes, the relative standard deviation of the combined dissolution, separation and determination methods was below 3.5% (n = 6).  相似文献   

15.
Donaldson EM  Mark E 《Talanta》1982,29(8):663-669
The chloroform extraction of 30 elements (Fe, Co, Ni, Zn, Cd, Ge, Sn, V, As, Sb, Bi, Cu, Ag, Au, Mn, Re, Ga, In, Tl, Se, Te, Cr, Mo, U, Pt, Pd, Rh, Ir, Ru and Ce) from 0.1-8M sulphuric acid in the presence of potassium ethyl xanthate has been studied. Pd(II), Bi, As(III), Sb(III), Se(IV) and Te(IV) are completely extracted and Au(III) is largely extracted over the range of acid concentration investigated. Fe(II), Tl(I), Rh(III) and Cr(VI) are only slightly extracted and Se(VI), Te(VI), Ru(III), Cr(III), Mn(II), Zn, Ce(IV), Ir(IV) and Ge(IV) are not extracted at all. Depending on the acid concentration, the remaining elements are all partly extracted. Results are compared with those obtained in an earlier study of the extraction of xanthate complexes from hydrochloric acid media. The processes involved in the formation of some xanthate complexes and potential analytical separations are discussed.  相似文献   

16.
Gupta JG 《Talanta》1993,40(6):791-797
A new method has been developed for rapid determination of mug/g and ng/g amounts of noble metals in silicate rocks, ores and metallurgical samples by attacking with hydrofluoric acid and aqua regia, preconcentration by ion-exchange chromatography and measuring in a simultaneous multi-element graphite furnace atomic absorption spectrometer equipped with a polarized Zeeman background correction device which eliminated interferences from any incompletely separated common elements. The method was tested for Ru, Rh, Pt, Ir, Pd, Ag and Au with three Canadian certified reference materials, and then applied to the determination of ng/g amounts of these elements in four new Canadian candidate reference materials.  相似文献   

17.
During the last decade the use of short-lived isotopes in activation analysis has exploded, owing to the application of high resolution gamma-ray spectrometry. Complex spectra can in fact be resolved without the need for chemical separations. The application of cyclic activation-counting enables the use of isotopes with half-lives below 10 seconds. These short-lived isotopes can be produced by different activation processes. As neutron sources one can distinguish reactors, generators for 14 MeV or high energy machines such as cyclotrons and isotopic neutron sources. High energy photons can be produced by interaction of an energetic electron beam with a target, giving rise to an intense bremsstrahlung spectrum with maximum energy from 10 up to 70 MeV. While these photons induce several types of threshold reactions, lower energetic photons are used for resonance activation producing metastable isomers. More and more also charged particles (p, d,3He, α) are being used as projectiles to produce radioactive isotopes that can be measured in activation analysis. In the present paper a concise compilation is made of the nuclear reactions, applicable in activation analysis of minor or trace constituents using gamma emitting isotopes with half-lived smaller than 1 hour. Activations of all naturally occurring elements, except the noble gases, with Z values ranging from 9 to 92 have been considered. The reactions resulting in the most sensitive gammaspectroscopic determinations have been selected and are tabulated per element, together with the appropriate cross section and the resonance integral if significant for neutron reactions, the cross section at the giant resonance energy for the photon and at the maximum of the excitation function for the charged particle reactions and the threshold energy for all threshold reactions. For each isotope produced the half-life and the major gamma-ray energy is given. Finally calculated or experimental sensitivities have been compiled from a number of references, as the emission rate per second of the most intense gamma-ray, at the end of a 1 minute irradiation under well-defined circumstances for 1 microgram of the element. When cyclic activation has been applied it is indicated. These data are provided for more than 200 nuclear reactions. It appears that the majority of the 70 elements constacred can in some way be determined with a high sensitivity after such a short irradiation. Only for the elements Tm and Tb no reaction yielding a short-lived isotope with a reasonable sensitivity could be found. Both elements can however very sensitively be determined after a longer neutron irradiation. For a number of elements activation analysis by means of the middle-long-lived isotopes (2 hours to 3 days) is the most sensitive even after a 1 minute irradiation and immediate count (Mn, Ga, As, Sr, Ru, La, Eu, Ho, Lu, Os and Au). But for all other elements the highest gamma emission rate results from isotopes with half-lives shorter than 1 hour. Extremely high counting rates are obtained after thermal reactor neutron activation for Na, Sc, V, Co, Se, Rh, Ag, In, Eu, Dy, Er and Hf. For a number of elements the selectivity of the analysis can however largely be enhanced by irradiation under Cd-cover. High σ0 ratios exist in fact for activation of medium and high Z elements such as Nb, Rb, Rh, Sn, Sb, Ba, Ce, Lu, Ta, Os, Hg and U. For some elements activation with reactor fission neutrons or 14 MeV neutrons provides an interesting sensitivity for a threshold reaction or the production of an isomer (F, Si, P, Cl, Ca, Cr, Se, Y, Ba, Ce, Pr, Bi, Pb). Cyclic activation and counting of very short-lived isotopes has been applied advantageously in the ng to μg range for a number of elements. Also cyclic activation with a 14 MeV generator has recently been studied. Low energy photon activation analysis allows selective production of metastable isomers of Se, Br, Ag, Er, Hf, Ir and Au, while high energetic photon production analysis yields high specific activities for elements such as K, Cr, Se, Br, Mo, Pr, Nd, Ho and allows interesting determinations of Mg, Cl, Si, Cr, Fe, Zr and Pb. Also charged particle activation can be used with surprisingly high sensitivity for some medium and high Z elements (Cr, Y, Se, Br, Zr, Mo, La, Ta, V). The intensity of the irradiation is in these cases mostly only limited by the properties of the sample itself, such as heat transfer and matrix activity. Examples of the compilation will be discussed and applications shown.  相似文献   

18.
Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively induced ethane elimination when M = Rh, whereas the related Ir systems prefer to decompose by alternative pathways.  相似文献   

19.
The structural and electronic properties of Au(m)Ag(n) binary clusters (2 < or = m + n < or = 8) have been investigated by density functional theory with relativistic effective core potentials. The results indicate that Au atoms tend to occupy the surface of Au(m)Ag(n) clusters (n > or = 2 and m > or = 2). As a result, segregation of small or big bimetallic clusters can be explained according to the atomic mass. The binding energies of the most stable Au(m)Ag(n) clusters increase with increasing m+n. The vertical ionization potentials of the most stable Au(m)Ag(n) clusters show odd-even oscillations with changing m+n. The possible dissociation channels of the clusters considered are also discussed.  相似文献   

20.
A procedure is described for the determination of Y, Zr, Nb, Ru, Rh, Pd, Ag, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Bi, and U in human urine and serum at concentrations relevant to the occupationally unexposed population. Sample preparation was limited to tenfold dilution with 2% HCl. A combination of a sample-introduction system designed to provide enhanced sensitivity and the use of water and acids of high-purity has resulted in limits of quantification (LOQ) in the sub-nanogram per liter range for 13 analytes. Instrumental background caused by release of analytes (Y, Zr, Ag, Sb, Au, Tl, Bi, U) from different parts of the sample-introduction system was found to be the major limitation in obtaining even better LOQ. Nevertheless, detection capabilities of the proposed procedure were adequate for all elements except Ru, Pd, and Rh. Despite of the use of high-resolution mode for these analytes some unresolved spectral interferences might still be present. For 13 elements an external accuracy assessment was accomplished by participation in proficiency testing and inter-comparison programs. Results obtained for pooled urine and serum were compared with concentrations reported for occupationally unexposed populations in recent publications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号