首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 114 毫秒
1.
Structural Features of Fructans from the Root of Cyathula officinalis Kuan   总被引:3,自引:0,他引:3  
陈晓明  田庚元 《中国化学》2003,21(7):858-863
Three fructans (CoPS1, CoPS2 and CoPS3) were isolated from the root of Cyathula officinalis Kuan, a traditional Chinese medicine. The structures of the fructans were determined by methylation, reductive-deavage method combined with GC-MS analysis, and 13C NMR spectroscopy. These results show that the fructans (CoPS1, CoPS2 and CoPS3) are graminan type fructans, and comprised of (2→t)- and (2→6)-linked β-D-fructofuranosyl backbone residues containing high branches.  相似文献   

2.
Abstract

The objective of this study was to evaluate the antimicrobial effect of Agave fructans against the Salmonella Typhimurium in “in vitro” experiments. The result of the antimicrobial activity was 263.89?±?0, 414.95?±?12.83, 494.54?±?13.88, 522.29?±?0, 580.41?±?14.92?AU for 10, 20, 30, 40 and 50% of Agave fructans (AF) respectively. In addition, there is a significant effect on the growth of the bacteria with all the percentages of AF evaluated (p?<?0.001, R2?=?0.859) with respect to the control. The growth rate of Salmonella with 25% AF was statistically significant compared to the control (?0.7353?±?0.586, 0.0079?±?0.002?D.O./h, respectively; p?>?0.01). Agave fructans could be an alternative to prevent the infections caused by Salmonella.  相似文献   

3.
This report describes a new series of oligosaccharides, which is formed in chicory roots under forcing conditions and during in vitro experiments using purified chicory 1-FFT (fructan:fructan 1-fructosyl transferase). It was demonstrated that the three smallest members of this new series (disaccharide, trisaccharide and tetrasaccharide) contain exclusively β-D-fructosyl residues after hydrolysis. The present data demonstrate that the smallest compound is levanbiose and that the other oligomers of this new series of fructans do not belong to the linear 2→6 linked levan-oligosaccharides nor to the linear 2→1 linked inulo-oligosaccharides. A combination of several chromatographic techniques yielded a fraction that contained only the compound with degree of polymerisation (DP) 2 (levanbiose, β-D-fructofuranosyl-(2→6)-D-fructofuranose), and a mixture of DP 3 of the new series and 1-kestose. Using homonuclear and heteronuclear 2D NMR experiments the complete 1H and 13C NMR assignments of levanbiose and DP 3 were obtained. From High Performance Anion Exchange Chromatography (HPAEC) and NMR experiments of DP 3 of the new series it was concluded that the molecule contains a β-D-fructofuranosyl residue 2→1 linked to the non-reducing moiety of levanbiose, and thus has to be named β-D-fructofuranosyl-(2→1)-β-D-fructofuranosyl-(2→6)-D-fructofuranose. The simple and regular pattern of the HPAEC retention times of the new oligosaccharides suggests that it is a homologous series of oligomers build by 2→1 elongation with β-D-fructofuranosyl residues at the non-reducing residue of levanbiose.  相似文献   

4.
Abstract

The methyl glycosides of the the tri-and tetrasaccharides present in the linkage region of heparin, methyl O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside and methyl O-(β-D-glucopyranosyluronic acid)-(l→3)-O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside sodium salt, were synthesized together with their phosphate containing analogues, methyl O-(β-D-galactopyranosyl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside 2-(disodium phosphate) and methyl O-(β-D-glucopyranosyluronic acid)-(l→3)-O-(β-D-galactopyrano-syl)-(l→3)-O-(β-D-galactopyranosyl)-(l→4)-β-D-xylopyranoside 2-(disodium phosphate) sodium salt, which are glycosides of the structure found in the linkage region of heparan sulphate.  相似文献   

5.
ABSTRACT

Synthesis of three tetrasaccharides, namely, 0-α-L-fucopyranosyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose (7), 0-α-L-fucopyranosyl-(1→4)-0-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-(1→3)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (9), and 0-α-L-fucopyransoyl-(1→3)-0-(2-acetamido-2-deoxy-β-D-glucopyransoyl)-(1→6)-0-(β-D-galactopyranosyl)-(1→4)-D-glucopyranose (15) has been described. Their structures have been established by 13C NMR spectroscopy.  相似文献   

6.
ABSTRACT

The 2-aminoethyl glycoside of O-α-L-fucopyranosyl-(1→2)-O-β-D-galactopyranosyl-(1→3)-[O-α-L-fucopyranosyl-(1→4)]-2-acetamido-2-deoxy-β-D-glucopyranose (Lewis B tetrasaccharide) was synthesized on a large scale and acryloylated with acryloyl chloride. The obtained oligosaccharide 2-acrylamidoethyl glycoside was then copolymerized with acrylamide to form a water-soluble, high molecular weight polymer, suitable for use in adhesion inhibition studies with Helicobacter pylori. Also synthesized were the corresponding derivatives of O-α-L-fucopyranosyl-(1→2)-O-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-D-glucopyranose and O-β-L-fucopyranosyl-(1→2)-β-D-galactopyranose.

  相似文献   

7.
The revised structures of avenacosides A and B and a new sulfated steroidal saponin isolated from grains of Avena sativa L. were elucidated. Their structures and complete NMR assignments are based on 1D and 2D NMR studies and identified as nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐D‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (1), nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐glucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (2), and nuatigenin 3‐O‐{α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐6‐O‐sulfoglucopyranosyl‐(1→4)]‐β‐d ‐glucopyranoside}‐26‐O‐β‐d ‐glucopyranoside (3). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Three new furostanol glycosides, named ciliatasides A, B, and C ( 1 – 3 , resp.), have been isolated from the roots of Digitalis ciliata, along with two known furostanol glycosides. The structures of the new compounds were identified as (2α,3β,5α,14β,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxyfurost‐20(22)‐en‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 1 ), (2α,3β,5α,14β,22R)‐26‐(β‐D ‐glucopyranosyloxy)‐2‐hydroxy‐22‐methoxyfurost‐25(27)‐en‐3‐yl β‐D ‐galactopyranosyl‐(1→2)‐[β‐D ‐xylopyranosyl‐(1→3)]‐β‐D ‐glucopyranosyl‐(1→4)‐β‐D ‐galactopyranoside ( 2 ), and (2α,3β,5α,14β,22R,25R)‐26‐(β‐D ‐glucopyranosyloxy)‐2,22‐dihydroxyfurostan‐3‐yl β‐D ‐glucopyranosyl‐(1→2)‐[β‐D ‐glucopyranosyl‐(1→3)]‐β‐D ‐galactopyranoside ( 3 ).  相似文献   

9.
Three new saponins 1–3 were isolated from Herniaria glabra by means of prep. HPLC and TLC. The structures were established mainly by a combination of 2D-NMR techniques (COSY, TOCSY, ROESY, HMQC, and HMBC) as O-α-L -rhamnopyranosyl-(1→4)-O-β-D -glucopyranosyl-(1-→6)-O-[β-D -glucopyranosyl-(1→2)]-β-D -glucopyranosyl medicagen-28-ate (herniaria saponin 4; 1 ), O-β-D -glucopyranosyl-(1→3)-O-α-L -rhamnopyranosyl-(1→2)-O-[β-(3R)-D -apiofuranosyl-(1→3)]-β-D -4-O-acetylfucopyranosyl 3-O-(β-D -glucuronopyranosyl)-16α-hydroxymedicagen-28-ate (herniaria saponin 5; 2 ), and O-α-L -rhamnopyranosyl-(1→4)-O-β-D -glucopyranosyl-(1→6)-O-[β-D -6-O-acetylglucopyra nosyl-(1→2)]-β-D -glucopyranosyl medicagen-28-ate (herniaria saponin 6; 3 ).  相似文献   

10.
Abstract

The allyl β-glycosides of a trisaccharide O-β-D-Glcp-(1→3)-O-[β-D-Glcp-(1→6)]-β-D-Glcp and of a tetrasaccharide O-β-D-Glqp-(1→3)-O-[β-D-Glqp-(1→6)]-O-β-D-Glcp-(1→3)-β-D-Glcp, corresponding to the branching point or the repeating unit of antitumor (1→6)-branched-(1→3)-β-D-glucans, have been synthesized starting from ethyl 2-O-benzoyl-4,6-O-benzylidene-l-thio-α-D-glucopyranoside and copolymerized in a radical reaction with acrylamide to obtain polyacrylamide copolymers containing the tri-and tetra-saccharides for immunochemical studies of schizophyllan.  相似文献   

11.
ABSTRACT

A branched hexasaccharide fragment of type Ia group B streptococcal polysaccharide, α-NeuAc(2→3)-β-D-Gal(1→4)-β-D-GlcNAc(1→3)-[β-D-Glc(1→4)]-β-D-Gal(1→4)-β-D-Glc-OMe (13), has been synthesized by chemical-enzymatic procedures. Chemical synthesis of a pentasaccharide, β-D-Gal(1→4)-β-D-GlcNAc(1→3)-[β-D-Glc(1→4)]-β-D-Gal(1→4)-β-D-Glc-OMe (12), was achieved from glycosyl donor, 4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-3,6-di-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl trichloroacetimidate (9), and acceptor, methyl O-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-(1→4)-O-(2,6-di-O-benzyl-β-D-galactopyranosyl)-(1→4)-2,3,6-tri-O-benzyl-β-D-glucopyranoside (6), by block condensation in 41% yield. Following enzymatic sialylation of 12 at the 3-O-position of its terminal galactopyranosyl residue using recombinant α-(2→3)-sialyltransferase and CMP-NeuAc afforded 13 in 59% yield.  相似文献   

12.
Five new triterpenoid saponins, including 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 1 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 2 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)‐(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 3 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐Oβ‐d ‐glucopyranosyl‐(1→3)‐β‐d ‐xylopyranosyl‐(1→4)‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 4 ), 3‐Oβ‐d ‐galactopyranosyl‐(1→2)‐[β‐d ‐xylopyranosyl‐(1→3)]‐β‐d ‐glucuronopyranosyl quillaic acid 28‐O‐(6‐O‐acetyl)‐β‐d ‐glucopyranosyl‐(1→3)‐[β‐d ‐xylopyranosyl‐(1→4)]‐α‐l ‐rhamnopyranosyl‐(1→2)‐[(4‐O‐acetyl)‐β‐d ‐quinovopyranosyl‐(1→4)]‐β‐d ‐fucopyranoside ( 5 ) together with two known congeners, saponariosides A ( 6 ) and B ( 7 ) were isolated from the roots of Saponaria officinalis L. Their structures were elucidated by extensive spectroscopic methods, including 1D‐ (1H, 13C) and 2D‐NMR (DQF‐COSY, TOCSY, HSQC, and HMBC) experiments, HR‐ESI‐MS, and acid hydrolysis.  相似文献   

13.
Abstract

Synthesis of methyl O-β-D-galactopyranosyl-(1→2)-β-D-glucopyranoside 1, methyl O-β-D-galactopyranosyl-(1→3)-β-D-glucopyranoside 2, methyl O-β-D-galactopyranosyl-(1→4)-β-D-glucopyranoside 3, methyl O-β-D-galactopyranosyl-(1→6)-β-D-glucopyranoside 4, methyl O-β-D-galactopyranosyl-(1→4)-[O-β-D-galactopyranosyl-(1→6)]-β-D-glucopyranoside 5, and methyl O-β-D-galactopyranosyl-(1→2)-[O-β-D-galactopyranosyl-(1→3)]-β-D-glucopyranoside 6, using 2,3,4,6 tetra-O-acetyl-α-D-galactopyranosyl trichloroacetimidate or 2,3,4,6 tetra-O-acetyl-α-D-galactopyranosyl bromide as a glycosyl donor and selectively protected derivatives of methyl O-β-D-glucopyranoside as glycosyl acceptors are described.  相似文献   

14.
Five new acyclic monoterpene glycosides 1 – 5 were isolated from the leaves of Viburnum orientale (Caprifoliaceae). Anatolioside ( 1 ) is a monoterpene diglycoside and its structure was elucidated as linalo-6-yl 2′-O-(α-L -rhamnopyranosyl)β-D -glucopyranoside (arbitrary numbering of linalool moiety). Compounds 2 – 5 are all derivatives of 1 , containing additional monoterpene and sugar units, connected by ester and glycoside bonds. Their structures were established as linalo-6-yl O-[(2E,6R)-6-hydroxy-2, 6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″? → 2″″)-β-D -glucopyranoside ( = anatolioside A; 2 ), linalo-6-yl O-β-D -glucopyranosyl-(1? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)–β-D -glucopyranoside ( = anatolioside B; 3 ), linalo-6-yl O-β-D ribo-hexopyranos-3-ulosyl-(1′? → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl-(1″ → 2′)-β-D -glucopyranoside ( = anatolioside C; 4 ) and linalo-6-yl O-[(2E, 6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1″? → 2″″)-O-β-D -glucopyranosly-(1″″ → 6?)-O-[(2E,6R)-6-hydroxy-2,6-dimethylocta-2,7-dienoyl]-(1? → 4″)-O-α-L -rhamnopyranosyl(1″ → 2′)-β-D -glucopyranoside ( = anatolioside D ; 5 ). The structure determinations were based on spectroscopic and chemical methods (acid and alkaline hydrolysis, acetylation and methylation).  相似文献   

15.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Isolation and Structure Elucidation of Neapolitanose (O-β-D -Glucopyranosyl-(1→2)-O-[β-D -glucopyranosyl-(1→6)]-D -glucose), New Trisaccharide from the Stigmas of Garden Crocusses (Crocus neapolitanus var.) From the stigmas of Crocus neapolitanus var. ‘Blue Bird’ two new crocetin glycosyl esters were isolated. They contained a hitherto unknown trisaccharide. For the structure elucidation a homonuclear 2D-1H-NMR-shift-correlation experiment was carried out with the peracetate of the isolated trisaccharide. This experiment revealed that the carbohydrate is O-β-D -glucopyranosyl-(1→2)-O-[β-D -glucopyranosyl-(1→6))]-D -glucose, for which we suggest the name ‘neapolitanose’. The two new C20-carotenoids from Crocus neapolitanus are crocetin (β-gentiobiosyl) (β-neapolitanosyl) ester ( 4 ) and crocetin di(β-neapolitanosyl) ester ( 5 ).  相似文献   

17.
A water-soluble polysaccharide TC-DHPA4 with a molecular weight of 8.0 × 105 Da was isolated from tissue-cultured Dendrobium huoshanense by anion exchange and gel permeation chromatography. Monosaccharide analysis revealed that the homogeneous polysaccharide was made up of rhamnose, arabinose, mannose, glucose, galactose and glucuronic acid with a molar ratio of 1.28:1:1.67:4.71:10.43:1.42. The sugar residue sequence analysis based on the GC-MS files and NMR spectra indicated that the backbone of TC-DHPA4 consisted of the repeated units:→6)-β-Galp-(1→6)-β-Galp-(1→4)-β-GlcpA-(1→6)-β-Glcp-(1→6)-β-Glcp-(→. The sugar residue sequences β-Glcp-(1→)-α-Rhap-(1→3)-β-Galp-(1→, β-Glcp-(1→4)-α-Rhap-(1→3)-β-Galp-(1→, β-Galp-(1→6)-β-Manp-(1→3)-β-Galp-(1→, and α-l-Araf-(1→2)-β-Manp-(1→3)-β-Galp-(1→ were identified as the branches attached to the C-3 position of (1→6)-linked galactose in the backbone.  相似文献   

18.
Three new triterpenoid saponins, ardisicrenoside I ( 1 ), ardisicrenoside J ( 2 ), and ardisicrenoside M ( 3 ), along with eight known compounds, were isolated from the roots of Ardisia crenata Sims . Their structures were elucidated as 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 1 ), 16α‐hydroxy‐30,30‐dimethoxy‐3βO‐{α‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 2 ), 30,30‐dimethoxy‐16‐oxo‐3βO‐{β‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐[β‐D ‐glucopyranosyl‐(1→2)]‐α‐L ‐arabinopyranosyl}‐13β,28‐epoxyoleanane ( 3 ), ardisiacrispin A ( 4 ), ardisiacrispin B ( 5 ), ardisicrenoside B ( 6 ), ardisicrenoside A ( 7 ), ardisicrenoside H ( 8 ), ardisicrenoside G ( 9 ), cyclamiretin A‐3βOβ‐D ‐xylopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 10 ), and cyclamiretin A‐3βOα‐L ‐rhamnopyranosyl‐(1→2)‐β‐D ‐glucopyranosyl‐(1→4)‐α‐L ‐arabinopyranoside ( 11 ) by means of chemical and spectral analysis, and their cytotoxicities were evaluated in vitro.  相似文献   

19.
Two new oleanolic acid‐type triterpenoid saponins, raddeanosides R22 and R23 ( 1 and 2 , resp.), together with four known saponins were isolated from the rhizome of Anemone raddeana Regel. The structures of the new compounds were elucidated as oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 1 ) and oleanolic acid 3‐Oα‐L ‐arabinopyranosyl(1→3)‐α‐L ‐rhamnopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 2 ). The four known compounds were identified as oleanolic acid 3‐Oα‐L ‐arabinopyranoside ( 3 ), oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→4)‐α‐L ‐arabinopyranoside ( 4 ), hederasaponin B ( 5 ), and hederacholchiside E ( 6 ) on the basis of chemical and spectral evidences. Compound 4 is reported for the first time from the Anemone genus, while the other three known compounds have been already found in this plant.  相似文献   

20.
Two new oleanane-type triterpenoid glycosides, 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-22α-angeloyloxyolean-12-ene-15α,16α,28-triol(1) and 3-O-β-D-xylopyranosyl-(1→2)-α-L-arabinopyranosyl-(1→3)-[β-D-glucuronopyranosyl-(1→2)]-β-D-glucuronopyranosyl-21β-acetyl-22α-angeloyloxyolean-12-ene-16α,28-diol (2) were isolated from the stems of Camellia oleifera Abel. Their structures were elucidated by means of spectroscopic methods and chemical evidence. The cytotoxic activities of compounds 1–2 were evaluated against five human tumour cell lines (HCT-8, BGC-823, A5049, and A2780). Compounds 1–2 showed cytotoxic activity against five human cancer cell lines, with IC50 values ranging from 3.15 to 7.32 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号