首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nd-Fe-B合金是迄今为止所发现的具有最大磁能积的永磁材料,目前关于Nd-Fe-B体系的磁学性质、晶体结构及相图已有多篇文献报道。但是,该体系中两个最重要的化合物Nd_(1.1)Fe_4B_4和Nd_2Fe_(14)B的标准生成自由能还没有文献报道。本文报道了用CaF_2单晶为固体电解质构成原电池,对Nd_(1.1)Fe_4B_4和Nd_2Fe_(14)B的标准生成自由能进行测定的结果。  相似文献   

2.
用磁测量和X-射线衍射研究了Nd_2(Fe_(1-x)Cox)_(14)B和Y_2(Fe_(1-x)Cox)_(14)B的晶格结构和内禀磁性。结果表明,低温下当钴含量较少时,Y_2(Fe_(1x)Cox)_(14)B的磁晶格向异性随钴含量的增加而增加,在1.5K和150K温度下,分别在x为0.4和0.2左右时磁晶各向异性常数达到极大;室温时的磁晶各向异性常数却随钴含量的增加而单调下降。用钴代换铁,对Nd_2(Fe_(1-x)Cox)_(14)B的自旋再取向温度的影响是复杂的。1.5K的饱和磁化强度在x=0.1左右达到极大。钴可以显著提高居里温度,对于Nd_2(Fe_(1-x)Cox)_(14)B和Y_2(Fe_(1-x)Cox)_(14)B,钴的作用几乎相同,表明居里温度主要由3d过渡金属原子之间的交换作用决定。  相似文献   

3.
采用了X射线衍射、扫描电镜和振动样品磁强计,研究了富稀土钕铁硼Nd_(10.5)Pr_(2.5)Fe_(80)Nb_1B_6合金真空感应熔炼、0.60~0.76 mm吸铸片的凝固过程和凝固择优取向特征。结果显示:0.76 mm吸铸片贴模面Nd_(10.5)Pr_(2.5)Fe_(80)Nb_1B_6因较高的冷却速度抑制α-Fe相的析出,过冷液体导致2∶14∶1相大量形核、沿热流方向等轴晶快速凝固,等轴晶组织具有垂直贴模面(006)磁织构,最后为富稀土相凝固;随着凝固界面的推进、冷却速度降低到一临界值以下,凝固机制发生改变,较低的冷却速度有利初生α-Fe相以树枝晶生长,随后2∶14∶1相在α-Fe相旁大量形核,成分过冷的液体有利2∶14∶1相以厚片状晶以[410]方向凝固,最后液体为富稀土相。0.60 mm吸铸片(Nd,Pr)2Fe14B从两侧贴模面形核以柱状晶向内部生长,最大长度超过吸铸片厚度一半,α-Fe相受到较大冷却速度的抑制,数量大幅度减少,0.60 mm吸铸片[006]磁取向进一步优化,剩磁提高73%,矫顽力提高到189.61 k A·m-1。  相似文献   

4.
采用金相观察,电子探针和X射线衍射分析等方法研究了Nd-Fe-B三元系的柜平衡,发现该系在常压、1000℃下有三个稳定的三元化合物,即Nd_2Fe_(14)B、Nd_2Fe_7B_6和Nd_9Fe_3B_8。各化合物均有严格的化学计量比而无溶解度范围。Nd_2Fe_7B_6和Nd_9Fe_7B_6两化合物与液相区之间存在很宽的两相平衡区。该系在常压下不存在NdFe_2化合物。  相似文献   

5.
新型RE—Fe—N系金属间化合物的结构与磁性   总被引:4,自引:0,他引:4  
纯二元RE(稀土)-Fe(铁)金属间化合物有两个弱点:一是居里温度低,如Y_2Fe_(17)的T_c只有330K;二是不具有易磁化轴,如RE_2Fe_(17)室温时皆为易磁化面。因此它们不可能作为永磁材料。Nd_2Fe_(14)B的问世,是研制RE-Fe永磁体的一个重大突破。但是,Nd_2Fe_(14)B仍未完全摆脱RE-Fe金属间化合物的通病,它的居里温度不够高,温度稳定性不好,限制了它的广泛应用。近来作为新型RE-Fe永磁材料的研究对象SmTiFe_(11),其居里温度与  相似文献   

6.
采用差热分析法研究了Nd_9Fe_(70)Ti_4C_2B_(15)永磁合金形核过冷度与其熔体过热度的关系。在此基础上,通过对不同熔体过热度的快淬薄带进行凝固组织结构分析、磁性能测试和差热分析,研究了熔体过热度对合金的非晶形成能力和晶化行为的影响。结果表明:在28~168 K的过热度范围内,Nd_9Fe_(70)Ti_4C_2B_(15)合金的过冷度随着熔体过热度的提高而显著增大了约80 K,它们之间呈现非线性关系;过冷度拐点对应的临界过热度为68 K,在小于68 K的过热度范围内,过冷度随过热度的提高而急剧增大了67 K,而在大于68 K的过热度范围内,过冷度随之而变化的幅度不大,其间的平均过冷度达到了174 K。熔体过热度为60 K时,快淬薄带的微观组织由Nd_2Fe_(14)B,Fe_3B和α-Fe纳米晶构成,其磁性能为H_(ci)=992.91 k A·m~(-1),B_r=0.56 T,(BH)_(max)=45.81 k J·m~(-3);熔体过热度提高至90和110 K时,快淬薄带的微观组织由纳米晶和非晶构成,且熔体过热温度越高,非晶的量越大;熔体过热度提高至150 K时,快淬薄带的微观组织由完全非晶构成。快淬薄带中的部分非晶或完全非晶在晶化退火过程中的相变都沿循以下路径:Am(非晶相)→Am'+Fe_3B→Fe_3B+Nd_2Fe_(23)B_3→Fe_3B+Nd_2Fe_(14)B+α-Fe。  相似文献   

7.
用烧结永磁体 NEOMAX-35实验曲线确定了硬磁性主相 Nd_2Fe_(14)B 的磁畴结构特点,讨论了不同磁化过程的机理。认为穿越各主相晶粒间界不可逆畴壁位移的起动场是影响内禀矫顽力的主要因素。  相似文献   

8.
采用高能球磨法制备了3NaBH4/ErF3复合储氢材料, 并研究了其相结构和储氢性能. X射线衍射(XRD)显示, NaBH4和ErF3在球磨过程中未发生反应; 同步热分析(TG-DSC)测试结果表明, 3NaBH4/ErF3体系在420℃开始放氢, 比相同测试条件下纯NaBH4的放氢温度降低了约100℃, 放氢量为3.06%(质量分数). 压力-成分-温度(Pressure-Composition-Temperature, PCT)性能测试结果显示, 3NaBH4/ErF3复合储氢材料在较低的温度(355~413℃)及平台氢压(<1 MPa)下即拥有良好的可逆吸放氢性能, 最高可逆吸氢量可达到2.78%(质量分数), 吸氢后体系重新生成了NaBH4相. 计算得吸氢焓变仅为-36.8 kJ/mol H2; 而放氢焓变为-180.8 kJ/mol H2. NaBH4在ErF3的作用下提高了热动力学性能, 并实现了可逆吸放氢.  相似文献   

9.
电化学法测定几种稀土贮氢合金的热力学函数   总被引:14,自引:0,他引:14  
贮氢材料由于能可逆地吸放氢,得到了广泛地应用.特别是以贮氢材料为负极制成的氢镍二次电池,容量为同类型镉镍电池的1.5~2倍,且电压又相近,是镉镍电池的理想换代产品,受到人们普遍的关注。LaNi_(4.5)Mn_(0.5),LaNi_(4.9)Sn_(0.1)和La_(0.8)Nd_(0.2)Ni_(2.5)Co_(2.4)Al_(0.1)是电化学性能较优越的贮氢合金。LaNi_(4.5)Mn_(0.5)的电化学容量高,理论容量可达400mAh.g~(-1).LaNi_(4.9)Sn_(0.1)和La_(0.8) Nd_(0.2)  相似文献   

10.
NdFeB合金选择氢爆的研究   总被引:3,自引:0,他引:3  
对NdFeB合金的选择氢爆进行了研究。研究表明,在较低的环境温度和氢气压力下,通过事先对合金中富Nd相的吸氢量进行理论计算并对放人容器内的NdFeB合金量进行定量控制,NdFeB合金在吸氢过程中完全可以实现良好的选择氢爆。SEM观察表明,选择氢爆时其碎裂的方式均为沿晶断裂,爆裂后粉末中的主相晶粒均是单晶粒子,Nd2Fe14B主相晶粒内均无裂纹形成。与完全氢爆相比,选择氢爆后的晶粒较粗大,且较均匀,但细小晶粒较少。  相似文献   

11.
Mg-20%(RE-Ni)(RE=La,Y,Mm)复合材料储放氢性能研究   总被引:1,自引:0,他引:1  
通过磁悬浮熔炼和反应球磨相结合的方法成功制备出Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,主要研究了材料的物相结构和储放氢性能.结果表明.Mg-20wt%(RE-Ni)(RE=La,Y,Mm)复合储氢材料,具有相似的物相结构和吸放氢热力学性能,吸氢相均为MgH2和Mg2Ni,在同一温度下,合金只有一个放氢平台,表明两相具有良好的协同放氢效应.在复合体系中,Mg-20wt%(Y-Ni)具有最佳的综合储氢性能,表明Y具有最佳的催化效果,其在293 K,3.0 MPa H2,10 min的吸氢量和573 K,对0.1 MPa,15 min的放氢量可分别达到3.92%和4.75%,实现了室温快速大量吸氢和较温和条件下的快速放氢.  相似文献   

12.
采用涂覆重稀土氢化物为扩散源,制备晶界扩散铈磁体,研究了磁性能和组织结构特点,并对其温度稳定性进行了分析评价。晶界扩散铈磁体的矫顽力从12.07 kOe提高至18.49 kOe,矫顽力和剩磁温度系数分别优化到-0.502%·℃~(-1)和-0.184%·℃~(-1)。采用EPMA和WDS成分分析表明,在磁体表层附近,大量Tb元素扩散到主相晶粒内部;扩散深度大于60μm时, Tb元素主要分布在晶界,并且在主相晶粒边缘形成(RE,Tb)_2Fe_(14)B壳层。由于Tb_2Fe_(14)B相和Ce_2Fe_(14)B相的各向异性场均具有较好的温度稳定性,因此,晶界扩散铈磁体可以获得与烧结钕铁硼磁体相当的矫顽力温度系数。  相似文献   

13.
采用氢化燃烧法制备La2-xNixMg17(x=0.5, 1, 1.5)三元体系储氢材料, 对其热力学、动力学进行研究发现: 该体系材料具有很好的活性和较高的储氢量, 其中La1.5Ni0.5Mg17在573 K时吸放氢量分别为5.40和5.15 mass% H. 在553 K下, 体系α-β相区在600 s之内吸放氢反应分数均大于91%, 随着含Ni量的增加材料储氢容量降低, 吸放氢速率增大.物相分析知道体系吸氢后的主相是MgH2, 放氢后主相为Mg, 同时存在Mg2Ni, LaNi5或LaH3等催化物质, 从而使材料的氢化动力学性能得以明显改善.  相似文献   

14.
将LiAlH4和LiNH2按摩尔比1:2进行球磨复合,随后将复合物进行加热放氢特性研究,然后对其完全放氢后的产物进行再吸氢特性研究。通过X射线衍射分析(XRD)、热分析(DSC)和红外 (FTIR)分析等测试手段对其反应过程进行了系统分析研究。研究结果表明,LiAlH4/2LiNH2加热放氢分为3个反应阶段,放氢后生成Li3AlN2,总放氢量达到8.65wt%。放氢生成的Li3AlN2在10MPaH2压力和400℃条件下,可以可逆吸氢5.0wt%,吸氢后的产物为 LiNH2 、AlN和LiH,而不能再生成LiAlH4。本文对LiAlH4/2LiNH2复合物放氢/再氢化过程机理进行了分析。  相似文献   

15.
LaNi5合金的吸氢动力学   总被引:2,自引:0,他引:2  
研究了LaNi_5-H体系的吸氢反应动力学。在吸放氢可逆反应同时考虑的情况下, 求得了速度方程的解析解。在α相区20—50 ℃的温度范围内, 吸氢速度常数k_α为0.08—0.41 s~(-1); 脱氢速度常数k_d为4.8—25 MPa·s~(-1)。吸氢反应的表观活化能E_α为35 kJ(mol H_2)~(-1)。在α+β相区的吸氢较α相区慢得多。起始阶段吸氢速度对氢压为一级, 反应受氢化物表面上氢分子解离控制。随着吸氢反应深度的增大, 吸氢速度变为固相中的界面反应控制。速度常数受温度的影响很小。α+β相区的压力平台前半段和后半段有着不同的吸氢速度。  相似文献   

16.
用X射线衍射、磁测量和中子衍射对Nd_2Fe_(20)C_x化合物的晶、磁结构和基本磁性进行了研究。结果表明,该系列化合物的主相具有铁磁性菱方结构,其空间群为(?)m。这一结构是在二元化合物Nd_2Fe_(17)的菱方结构基础上形成的,碳原子加入到一对6c晶位铁原子之间的3a晶位上,改变了这对铁原子间的相互距离和交换作用,因此随着化合物中碳含最的增加,其晶格常数变大,居里温度升高。对Nd_3Fe_(20)C_x的中子衍射谱进行拟合计算,求出了单胞中各晶位原子磁矩的大小和方向,得出Nd_3Fe_(20)C_(1.0)的分子磁矩为25.57μ_B,各晶位原子磁矩的方向均与c轴垂直,这些结果与对取向样品的磁测量结果一致。  相似文献   

17.
采用NaH和Al为合成原料,镨、钕氢化物为催化剂,通过机械球磨(NaH/Al+6%(摩尔分数)RE-H)(RE=Pr,Nd)复合物的方法并加氢合成NaAlH4络合氢化物,系统研究了催化剂对其吸放氢性能的影响。结果表明,加入PrH2.92和NdH2.27能明显改善NaH/Al复合物的吸放氢动力学性能,有效降低NaAlH4的脱氢温度。(NaH/Al+6%PrH2.92)和(NaH/Al+6%NdH2.27)复合物的120℃吸氢容量分别为3.57%和3.61%(质量分数),170℃放氢容量分别为2.57%和2.95%;且两者均具有较好的吸放氢循环稳定性,但吸(放)氢后样品中均存在少量Na3AlH6相,表明样品的吸(放)氢反应进行得并不彻底,使得其实际吸放氢容量低于理论可逆储氢容量。研究表明,PrH2.92和NdH2.27在球磨、吸/放氢过程中始终稳态存在,起着催化储氢作用;(NaH/Al+6%PrH2.92)复合物的放氢活化能稍低于(NaH/Al+6%NdH2.27)复合物。  相似文献   

18.
化学法合成的金属间化合物,其表面状态与冶金法合成的样品不同,使其吸、放氢动力学有较大改进。本文研究了化学法合成的富镧MMNi_5(MM为混合稀土金属)在初始压力2.33~5.57MPa,温度20~60℃范围内的吸氢过程动力学行为,及在20~60℃范围内放氢过程的动力学行为。实验结果表明,吸氢量与时间、初始氢压的关系(1gn-1gt;1g△n—1gP)均为直线关系,并求得吸、放氢初期表观激活能分别为5.23和16.95kJ/molH_2。初步判定MMNi_5在两相区的吸氢过程中,不同吸氢阶段,速率限制性环节不同。吸氢初始阶段和初始氢压较低时,表面过程为限制性环节,为一级反应。当吸氢量逐渐增大或初始氢压较高时,速率限制性环节转化为扩散控制,反应转为0.5级。MMNi_5氢化物在两相区的放氢反应是一级反应,速率限制性环节是氢原子向固体表面的扩散过程。  相似文献   

19.
王家盛  韩树民  李媛  沈娜  张伟 《物理化学学报》2014,30(12):2323-2327
为了降低MgH2的吸放氢温度,提高其吸放氢动力学性能,本文通过球磨方法制备了MgH2+20%(w)MgTiO3复合储氢材料,并研究了其储氢性能.X射线衍射(XRD)结果表明,MgTiO3在与MgH2球磨过程中生成Mg2TiO4和TiO2,并且Mg2TiO4和TiO2在体系的吸放氢过程中保持稳定,能够对MgH2的吸放氢过程产生催化作用.程序升温脱附和吸/放氢动力学测试结果表明,添加MgTiO3后MgH2的初始放氢温度从389°C降至249°C.150°C下的吸氢量从0.977%(w)提高到2.902%(w),350°C下的放氢量从2.319%(w)提高到3.653%(w).同时,MgH2放氢反应的活化能从116kJ·mol-1降至95.7kJ·mol-1.与MgH2相比,MgH2+20%(w)MgTiO3复合材料的热力学与动力学性能均有显著提高,这主要是由于球磨和放氢过程中原位生成的TiO2和Mg2TiO4具有良好的催化活性.  相似文献   

20.
以等物质的量比的Li3N和LiNH2为起始原料,采用高能球磨法制得了Li-N-H体系,并研究了该体系循环放氢性能衰减的主要原因。XRD及FTIR结果表明,Li3N-LiNH2体系经首周吸氢后转变为LiNH2与LiH,在之后的吸放氢循环中,可逆的吸放氢过程发生在LiNH2与Li2NH之间相的转变。放氢动力学结果表明,Li3N-LiNH2体系在280℃下首周放氢量达5.6wt%,100 min内完成总放氢量的86%。但在循环3周后,100 min内的放氢量衰减至初始的36%。SEM及BET结果表明,放氢量的衰减主要是由于样品的烧结所致,但可通过再次球磨使其循环放氢性能恢复。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号