首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
在超声分子束条件下,利用360.50 nm的电离激光使N2O分子经由[3+1]共振增强多光子电离(REMPI)产生纯净的N2O+(X2Π(000))分子离子,用另一束解离激光在230-275 nm范围扫描获得N2O+经由B2Πi←X2Π跃迁产生的光解碎片(NO+和N2+)激发(PHOFEX)谱.获得的光解碎片激发谱可以归属为B2Πi(00n)←X2Π(000)序列跃迁.我们分别将线性三原子分子离子N2O+中N―N伸缩振动简化成NO和N之间的简谐振动,N―O伸缩振动简化成N2和O之间的简谐振动,用谐振子的简谐势能曲线和波函数对N2O+分子离子X2Π和B2Πi电子态振动能级间跃迁的Franck-Condon因子进行计算,和实验得到的碎片离子增强谱实验强度进行比较,对前人给出的分子数据(分子平衡核间距)进行验证,讨论了N2O+经由B2Πi(00n)←X2Π(000)电子态跃迁的光解离机理和碎片离子的分支比.  相似文献   

2.
用一束波长为230.1 nm的激光, 通过(2+1)共振增强多光子电离(REMPI)过程激发超声射流冷却的CO分子制备处于基电子态X2∑+的CO+离子, 随后引入另一束可调谐激光将CO+离子激发至A2∏1/2,3/2态, 利用光电倍增管(PMT)检测发射的荧光信号强度随激发光波长的变化, 分别在487-493 nm和453-459 nm波长范围内获得了CO+离子A2∏1/2,3/2←X2∑+电子态跃迁(0,0)和(1,0)带的激光诱导荧光(LIF)激发谱.  相似文献   

3.
在超声分子束条件下,由423、420、412.2和408.4nm的电离激光使OCS分子通过[3+1]共振增强多光子电离(REMPI)制备出OCS+(X2Π)离子后,在260-325nm范围内扫描解离激光获得了OCS+离子经由A2Π3/2←X2Π3/2(000)和A2Π1/2←X2Π1/2(000,001)跃迁的分质量光解离谱(母体离子OCS+的凹陷谱和碎片离子S+的增强谱).其中A2Π1/2←X2Π1/2(001)跃迁的光解离谱是首次观察到.由A2Π3/2←X2Π3/2(000)光解离谱得到了A2Π3/2电子态的光谱常数T0=31411.3cm-1,ν1=814.3cm-1;由A2Π1/2←X2Π1/2(000)光解离谱得到了A2Π1/2电子态的光谱常数ν1=816cm-1,ν2=(380.4±2.8)cm-1,ν3=(2052.7±5.1)cm-1,而从A2Π1/2←X2Π1/2(001)光解离谱拟合出的A2Π1/2电子态的ν1(786.4cm-1)稍有不同,表明在A2Π1/2←X2Π1/2(001)跃迁中X2П1/2电子态的C-O键振动(ν3)激发影响了A2Π1/2电子态C-S键的振动(ν1).实验结果表明:在A2Π1/2←X2Π1/2(000,001)跃迁的光解离谱中能够显著观察到属于A2Π电子态的ν2弯曲振动模激发的谱峰,例如A2Π1/2(020,120,021,…),而在A2П3/2(υ1υ2υ3)←X2Π3/2(000)跃迁的光解离谱中几乎没有观察到属于ν2弯曲振动模激发的谱峰.这种弯曲振动激发和A2П电子态的旋轨分裂分量(Ω)的相关性可以通过A2Π电子态的Fermi共振和Renner-Teller效应来解释.  相似文献   

4.
在超声分子束条件下,由423、420、412.2和408.4 nm的电离激光使OCS分子通过[3+1]共振增强多光子电离(REMPI)制备出OCs+ (X2Π)离子后,在260-325 nm范围内扫描解离激光获得了OCS+离子经由A2Π3/2←X2Π3/2 (000)和A2Π1/2←X2Π1/2 (000,001)跃迁的分质量光解离谱(母体离子OCS+的凹陷谱和碎片离子S+的增强谱).其中A2Π1/2←X2Π1/2 (001)跃迁的光解离谱是首次观察到.A2Π3/2←X2Π3/2(000)光解离谱得到了A2Π3/2电子态的光谱常数T0=31411.3 cm-1,v1=814.3 cm-1;由A2Π1/2←X2Π1/2 (000)光解离谱得到了A2Π1/2电子态的光谱常数v1=816 cm-1,v2=(380.4±2.8) cm-1,v3=(2052.7±5.1) cm-1,而从A2Π1/2←X2Π1/2 (001)光解离谱拟合出的A2Π1/2电子态的V1 (786.4 cm-1)稍有不同,表明在A2Π1/2←X2Π1/2(001)跃迁中A2Π1/2电子态的C-O键振动(V3)激发影响了A2Π1/2电子态C-S键的振动(V1).实验结果表明:在A2Π1/2←X2Π1/2(000,001)跃迁的光解离谱中能够显著观察到属于A2Π电子态的V2弯曲振动模激发的谱峰,例如A2Π1/2(020,120,021,…),而在A2Π1/2(v1v2v3)←A2Π3/2(000)跃迁的光解离谱中几乎没有观察到属于V2弯曲振动模激发的谱峰.这种弯曲振动激发和A2Π电子态的旋轨分裂分量(Ω)的相关性可以通过A2Π电子态的Fermi共振和Renner-Teller效应来解释.  相似文献   

5.
通过193nm光解丁烯酮分子产生乙烯基自由基(·C2H3).经射流冷却后,以另一束可调谐激光光解·C2H3,生成的氢原子碎片经共振增强多光子电离(REMPI)过程,记录氢离子信号随光解波长变化,得到21180 ̄21320cm-1范围内乙烯基A!2A″(!′5,6,8=1)←X!2A′(!″=0)跃迁的振转光谱.结合量化计算和光谱拟合,对该段光谱进行了细致的振转分析,确定了各振动谱带位置,识别了其中主要的转动跃迁.由光谱拟合得到各振动能级的预解离寿命,讨论了其与振动模式及激发转动量子数的依赖关系,证实了理论预测的乙烯基A!2A″电子态的面内解离机制.  相似文献   

6.
在气束条件下,利用483.2 nm的激光(3+1)共振增强多光子电离(REMPI)CS2分子以产生CS2+离子源,用另一束可调谐激光在424~482 nm内,通过对CS2+( 2 Πg)(1+1)双光子共振解离产生的碎片离子激发谱的探测,来获取CS2+ 的光解离动力学信息.光解离碎片S+的激发谱 (PHOFEX)可归属为CS2+ ( 2 Πu,3/2 (v′=0~4, v′=v1′+ (1/2)v2′) ← 2 Πg,3/2 (0,0,0))和 ( 2 Πu,1/2(v′=0~4)← 2 Πg,1/2(0,0,0))的跃迁.对CS2+光解离动力学的研究表明,其产生S+的通道为:(i)CS2+吸收一个光子从基态 2 Πg共振激发至 2 Πu态,(ii)已布居的 2 Πu态的振动能级和 2 Πg态的高振动能级产生耦合, (iii)吸收第二个光子从上述耦合的振动能级进一步激发至 2 Σu +态,再通过 2 Σu +态与4Σ- 态间的自旋-轨道相互作用,经由4Σ- 排斥态解离产生S++CS.  相似文献   

7.
利用阈值光电子-光离子符合飞行时间质谱研究了氯甲烷分子在13至17eV激发能量范围内的光电离和光解离动力学.在此能量范围内,电离产生的CH3Cl+离子处于A2A1和B2E电子激发态.两电子态均为完全解离态,可生成CH3+和CH2Cl+碎片离子,其中CH3+是最主要的解离产物.拟合CH3+离子的符合飞行时间质谱峰形,可以得到CH3Cl+离子解离过程中释放的平动能分布,结果显示CH3Cl+离子A2A1态解离生成CH+3的过程接近直接解离机理,而B2E态的解离过程则具有统计解离的特征.此外,结合理论计算的势能面信息,我们推测在A2A1态出现的CH2Cl+碎片离子来源于CH3Cl分子自电离产生高振动激发的CH3Cl+(X2E)离子统计解离过程.  相似文献   

8.
通过193 nm光解丁烯酮分子产生乙烯基自由基(•C2H3). 经射流冷却后, 以另一束可调谐激光光解•C2H3, 生成的氢原子碎片经共振增强多光子电离(REMPI)过程, 记录氢离子信号随光解波长变化, 得到21180~21320 cm-1范围内乙烯基 A2A″(µ′5,6,8=1)←X2A′(µ″=0)跃迁的振转光谱. 结合量化计算和光谱拟合, 对该段光谱进行了细致的振转分析, 确定了各振动谱带位置, 识别了其中主要的转动跃迁. 由光谱拟合得到各振动能级的预解离寿命, 讨论了其与振动模式及激发转动量子数的依赖关系, 证实了理论预测的乙烯基A2A″电子态的面内解离机制.  相似文献   

9.
用一束波长为230.1nm的激光,通过(2 1)共振增强多光子电离(REMPI)过程激发超声射流冷却的CO分子制备处于基电子态X2Σ 的CO ,随后引入另一束可调谐激光将CO 离子激发至A2Π1/2,3/2态,利用光电倍增管(PMT)检测发射的荧光信号强度随激发光波长的变化,分别在487-493nm和453-459nm波长范围内获得了CO 离子A2Π1/2,3/2←X2Σ 电子态跃迁(0,0)和(1,0)带的激光诱导荧光(LIF)激发谱.  相似文献   

10.
在243~263 nm紫外光波段通过质量选择光电离激发谱研究了丙酮(CH3COCH3)的光化学反应通道。分析母体离子CH3COCH3+和碎片离子CH3CO+ 、 CH3+的光电离激发谱和质谱峰宽可以知道: 此光波段丙酮分子的光化学反应主要包括了丙酮分子经由(S1,T1)中间态产生母体离子的(1+1)双光子电离通道,母体离子进一步解离产生碎片离子CH3+的“光电离-光解离”通道和丙酮分子经由(S1,T1)中间态解离成中性自由基碎片CH3CO后再进一步被双光子电离的“光解离-光电离”通道。由母体离子光电离激发谱双光子阈值波长(255.67 nm)给出的丙酮电离势(IP)为(9.696±0.004)eV。  相似文献   

11.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

12.
NH_3Ã(~1Ã″_2)是个快速预解离态,寿命约10~(-13)s。本文研究了以这个态为中间共振态的2+1+1双色双共振多光子电离过程。我们首先获得了NH_2和ND_3两分子X→Ã→C′NH_3~+(或ND_3~+)+e跃迁的多光子电离光增, 求出了ND_3C′v_2=0, 1两能级的转动常数,然后通过合理的实验设计, 得到了NH_3分子X→Ã跃迁转动线的增益线型。  相似文献   

13.
通过193 nm光解丁烯酮分子产生乙烯基自由基(·C2H3).经射流冷却后,用另一束激光光解·CaH3,生成的氢原子碎片经共振增强多光子电离(REMPI)过程,记录氢离子信号随光解波长变化,得到20020~20070 cm-1范围内乙烯基激发的转动分辨光谱.该谱对应于(A)2A″(v′=0)←(X)aA′(v″=0)跃迁的转动结构.结合量子化学理论计算、光谱拟合以及前人的研究结果,对该段光谱进行了完整的转动识别,确定了40条转动谱线的位置.由光谱拟合还得到(A)2A″(v′=0)能级的预解离寿命为3.3 ps,且不依赖于转动量子数.  相似文献   

14.
通过193nm光解丁烯酮分子产生乙烯基自由基(·C2H3).经射流冷却后,用另一束激光光解·C2H3,生成的氢原子碎片经共振增强多光子电离(REMPI)过程,记录氢离子信号随光解波长变化,得到20020~20070cm-1范围内乙烯基激发的转动分辨光谱.该谱对应于A$2A″(v′=0)%X$2A′(v″=0)跃迁的转动结构.结合量子化学理论计算、光谱拟合以及前人的研究结果,对该段光谱进行了完整的转动识别,确定了40条转动谱线的位置.由光谱拟合还得到A$2A″(v′=0)能级的预解离寿命为3.3ps,且不依赖于转动量子数.  相似文献   

15.
在242-260nm波氏范围通过CS2分子的共振增强多光子电离(REMPI)获得了母体离子CS和碎片离子的分质量激发谱.在λ<246.4nm区间,CS激发谱上呈现出来源于CS2双光子电离的弥散谱带,碎片离子激发谱的归属强烈提示多光子过程中有中性基电子态的CS和S(经由CS2的光解离)产生:(1)CS 的谱带主要来源于中性CS碎片经由单光子跃迁产生的(1+1)共振增强电离,(2)除了部分S 的谱峰来自CS 的光解外,多数S 的锐谱峰来自中性S原子经由3p3(2D0)4p,3p3(4S0)np(n=6,7,8)←3p43pJ(J=2,1,0)双光子跃迁产生的(2+1)共振增强电离.  相似文献   

16.
张昌华  张延  张嵩  张冰 《物理化学学报》2009,25(8):1708-1712
利用离子速度影像方法结合共振增强多光子电离(REMPI)技术研究了氯碘甲烷在A带的光解机理. 从266和277 nm的I*(5p 2P1/2)和I(5p 2P3/2)离子速度影像获得了碎片的平动能分布和角度分布. I和I*的平动能分布呈单高斯型, 可用软自由基近似来解释. I和I*是在排斥的势能面上直接解离产生的. 实验得到的各向异性参数β证实分子受激发后主要产生3Q0态, 并且3Q0和1Q1态之间存在非绝热转移. 波长越短, 这种非绝热转移越强. 在235 nm附近, Cl和Cl*各向同性的离子影像说明氯原子来自于CH2ICl的二次解离过程, 即CH2ICl先解离产生CH2Cl自由基, 自由基再解离产生氯原子.  相似文献   

17.
利用离子速度成像方法, 研究n-C7H15Br分子在231~239 nm范围内几个波长处的光解离动力学. 通过同一束激光经(2+1)共振多光子电离(REMPI)过程探测光解碎片Br(2P3/2)和Br*(2P1/2), 得到了不同激光波长处的离子速度分布图像, 从而获得C7H15Br光解产物的能量分配和角度分布. 结合各向异性参数和量子产率, 计算了n-C7H15Br分子在234 nm波长下不同解离通道的比例. 实验表明光解产物的能量分配可以用冲击模型中的软碰撞模型来解释. 实验还发现, 各向异性参数β(Br*)的值对光波长变化很敏感, 这是由电子激发态的绝热和非绝热过程决定的.  相似文献   

18.
离子速度成像方法研究溴代环己烷的紫外光解动力学   总被引:1,自引:0,他引:1  
利用二维离子速度成像方法对C6H11Br分子在234 nm附近的光解动力学行为进行了研究. 通过(2+1)共振增强多光子电离探测了光解产物Br*(2P1/2)和Br(2P3/2), 得到它们的相对量子产率. 从光解产物Br*(2P1/2)和Br(2P3/2)的速度图像得到了能量和角度分布. 结果表明, Br*原子主要来自于S1态的直接解离, 而Br则绝大部分是从S2态向T3态的系间交叉跃迁得到, 并导致了两种解离通道能量分布的差别. 实验发现C6H11Br分子解离过程中大部分能量都转化为内能, 但与其它长链溴代烷烃分子相比, 可资用能更多地被分配到平动能中, 结合软反冲模型分析了这种能量分配跟环烷基的构象和稳定性的关系.  相似文献   

19.
用266 nm激光解离亚硝基苯(C6H5NO) 产生光解碎片NO,并利用单光子激光诱导荧光(LIF)技术(X2Πν″=0→A2Σ+ν′=0)测得初生态光解产物NO的振转光谱。根据计算所得的模拟光谱对光解碎片NO(X,ν″=0)的转动量子数J″进行了归属,得到量子数最大到J″=50.5的各转动能级的相对布居,这表明光解碎片NO具有较高的转动激发。提出了C6H5NO在266 nm下可能的光解机理。  相似文献   

20.
利用飞秒时间分辨的光电子影像技术研究了2-甲基呋喃分子激发态超快非绝热动力学。2-甲基呋喃分子吸收两个400 nm的光子后同时被激发到n=3的里德堡态S1[~1A′′(π3s)]、~1A′(π3p_x)、~1A″(π3p_y)、~1A″(π3p_z)和价电子态~1A′(ππ*),之后被两个800 nm的光子电离。通过母体离子产率随泵浦-探测延迟时间的变化曲线测得这些里德堡态与价电子态的平均寿命为50 fs。通过解析光电子能谱中n=3的里德堡态与价电子态所对应的组分峰的相对演化特征,观测到了这些激发态之间的内转换过程,并且揭示了价电子态~1A′(ππ*)在内转换过程中扮演的重要"纽带"作用。里德堡态与价电子态之间的混合,形成势能面间的锥形交叉,导致了如此超快的内转换过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号