首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A simple low-energy two-step dilution process has been applied in oil/surfactant/water systems with pentaoxyethylene lauryl ether (C12E5), dodecyldimethylammonium bromide, sodium bis(2-ethylhexyl)sulfosuccinate, sodium n-dodecyl sulfate-pentanol, and hexadecyltrimethylammonium bromide-pentanol. Appropriate formulations were chosen for the concentrate to be diluted with water to generate oil-in-water (O/W) emulsions or nanoemulsions. For the system of decane/C12E5/water, bluish, transparent nanoemulsions having droplet radii of the order of 15 nm were formed, only when the initial concentrate was a bicontinuous microemulsion, whereas opaque emulsions were generated if the concentrate began in an emulsion-phase region. Nanoemulsions generated in the system decane/C12E5/water have been investigated both by dynamic light scattering (DLS) and contrast-variation small-angle neutron scattering (SANS). The SANS profiles show that nanodroplets exist as spherical core-shell (decane-C12E5) particles, which suffer essentially no structural change on dilution with water, at least for volume fractions phi down to 0.060. These results suggest that the nanoemulsion droplet structure is mainly controlled by the phase behavior of the initial concentrate and is largely independent of dilution. A discrepancy between apparent nanoemulsion droplet sizes was observed by comparing DLS and SANS data, which is consistent with long-range droplet interactions occurring outside of the SANS sensitivity range. These combined phase behavior, SANS, and DLS results suggest a different reason for the stability/instability of nanoemulsions compared with earlier studies, and here it is proposed that a general mechanism for nanoemulsion formation is homogeneous nucleation of oil droplets during the emulsification.  相似文献   

2.
 The phase behaviour and properties of the tetradecyldimethylamine oxide/HCl/hexanol/water quaternary surfactant system have been studied by means of electric conductivity, rheology, freeze-fracture transmission electron microscopy (FF-TEM) and small-angle neutron scattering (SANS). In this system the originally zwitterionic surfactant can become increasingly charged by protonation through the addition of HCl, i.e. the degree of charging can be changed continuously. An interesting, isotropic phase (L1 * phase) of low viscosity was observed for intermediate degrees of charging. From viscosity and conductivity measurements this phase can clearly be distinguished from the conventional L1 phase that is composed of micelles. Investigation of the structures present by means of FF-TEM and SANS showed that the L1 * phase is made up of unilamellar vesicles of extremely small diameter of 8–10 nm. Evidently such highly curved structures are stabilized by the electrostatic conditions in this system. Received: 11 July 1999/Accepted: 25 August 1999  相似文献   

3.
Microemulsion samples of a polyoxyethylene trisiloxane surfactant, water, and 1-decanol are investigated using pulsed field gradient NMR and small-angle neutron scattering (SANS) to determine the solution structure. The surfactant/decanol weight ratio has been kept constant at values of 10:1, 8:1, and 6:1 under variation of water content. The temperature was 32 degrees C for the measurement series at the weight ratio of 10:1 to avoid phase separation at high water content. Also, aqueous surfactant solution samples have been investigated as a function of composition and temperature. Water-rich samples consist of micelles that are close to spherical at very low surfactant concentration and grow into anisometric, that is, oblate formed aggregates, at higher surfactant (or surfactant and decanol) concentration. The aggregates grow with increasing temperature, most probably due to dehydration of the hydrophilic groups. In a concentration range around 50 wt % water, the systems form bicontinuous structures. SANS data are used to estimate surfactant film properties using a model developed for interpretation of neutron scattering data from related systems.  相似文献   

4.
We compare two ternary microemulsions, stabilized by the nonionic surfactant pentaethylene‐glycol‐dodecyl‐ether (C12E5), containing decane or hexadecane. The comparison involves phase behavior and properties of O/W droplet microemulsions investigated with SAXS, static and dynamic light scattering, and NMR. Striking differences are observed. The systems are analyzed in terms of curvature elastic properties of surfactant film. Apart from an increase of the spontaneous curvature, there also appears to be a small but significant increase in the saddle splay constant as the oil chain length is increased.  相似文献   

5.
溶致液晶体系研究及其在三次采油中的应用   总被引:8,自引:0,他引:8  
研究了石油磺酸盐/正戊醇/水的三元体系和石油磺酸盐/癸烷/正戊醇/水的拟三元体系相图中的液晶区域,揭示了不同组分对液晶区域大小的影响以及液晶的流变性和液晶的结构.在三次采油中,用六角状溶致液晶体系代替三元复合驱体系进行化学驱油,虽然驱油效率更高,但需要进一步降低液晶驱油体系的成本.  相似文献   

6.
The effect of phenol on the structure of micellar solution of a cationic surfactant, cetyltrimethylammonium bromide (CTAB) was investigated using viscosity, dynamic light scattering (DLS), small angle neutron scattering (SANS) and nuclear magnetic resonance (NMR) techniques. The relative viscosity and apparent hydrodynamic diameters of the micelles in CTAB solution increase initially and then decrease with addition of phenol. SANS studies indicate a prolate ellipsoidal structure of the micelles. The axial ratio of the prolate ellipsoidal micelles increases and then decreases with addition of phenol, consistently with DLS and viscosity measurements. NMR studies confirm the solubilization of phenol to the palisade layer and growth of the micelles at high concentration of phenol as revealed from the broadening of peaks.  相似文献   

7.
The structure of a microemulsion mixed with polymer networks was investigated by means of small-angle neutron scattering (SANS). The system consists of nonionic surfactant, polymer network, oil, and water. The microemulsion and the polymer network employed in this work are known to undergo temperature-induced structural transition and volume phase transition, respectively. Polymer solutions and gels were made by polymerizing monomer solutions in the presence of microemulsion droplets. In the case of a mixture of an N-isopropylacrylamide (NIPA) monomer solution and a microemulsion, the NIPA monomer was found to behave as a cosurfactant. However, polymerization resulted in a phase separation to polymer-rich and -poor phases. Interestingly, SANS results indicated that a well-developed ordered structure of oil domains was formed in polymer network and the structure was very different from its parent systems. Furthermore, the system underwent two different types of structural transitions with respect to temperature. One was originated from the structural transition of microemulsion due to the change of the spontaneous curvature and the other from the volume phase transition of the NIPA gel.  相似文献   

8.
The phase behavior and structure of a four-component microemulsion system forming droplets with an oil core surrounded by the non-ionic C12E5 surfactant in water and "decorated" by long PEO chains using the block copolymer/surfactant Brij 700 has been studied. The surfactant-to-oil volume ratio, the coverage density of the droplets with decorating molecules, and the temperature were varied. For a surfactant-to-oil volume ratio of 2, the solutions form isotropic and clear solutions at room temperature, and the addition of Brij molecules stabilize the micelles: the transition to an opaque phase is shifted to higher temperatures as the surface coverage increases. At a surfactant-to-oil ratio of 1, the isotropic microemulsion phase is confined to a very narrow range of temperature, which location is shifted to increasing temperature, as the amount of Brij at the surface of the droplet is increased. For large surface coverages, the lower emulsification boundary varies roughly linearly with the surface coverage. The structure of the droplet phase was investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). For a surfactant-to-oil ratio of 2, the SANS data revealed a transition from rodlike to spherical particles when Brij molecules are added to the system, which induces a larger curvature of the surfactant film. For a surfactant-to-oil ratio of 1, the droplets are nearly spherical at all surface coverages. The intermicellar interactions effects become increasingly more pronounced as Brij is added, due to the introduction of the highly swollen corona. A quantitative analysis of some of the SAXS data was done using an advanced model based on Monte Carlo simulations. It demonstrates the strong chain-chain interactions within the corona and confirms the increased interparticle interactions, as the coverage density is increased.  相似文献   

9.
Distribution of water in stoichiometric hydrophilic epoxy network swollen in heavy water to different degrees (epoxy-based hydrogels) at 25 °C has been investigated by small-angle neutron scattering (SANS) and differential scanning calorimetry (DSC). Nanophase separated structure of the hydrogels consisting of water-rich and water-poor domains was revealed by SANS. Two regimes for hydrogel structure were found: (a) at low water content hydrogel consists of isolated water-rich domains dispersed in continuous water-poor phase and (b) at high water content the water-rich domains form another continuous phase. Isosbestic point of scattering curves was found by SANS in the latter region and attributed to conservation of Porod’s length of the nanophase separated structure. Thermal properties of the system are qualitatively different in the two regions: in the former one the glass transition temperature decreases with growing water content while in the latter one it remains constant. Percolation threshold separating both regimes is reflected in a jump of glass transition temperature and inversion of the dependence of the specific heat difference at glass transition.  相似文献   

10.
The phase behavior and structure of sucrose ester/water/oil systems in the presence of long-chain cosurfactant (monolaurin) and small amounts of ionic surfactants was investigated by phase study and small angle X-ray scattering. In a water/sucrose ester/monolaurin/decane system at 27 degrees C, instead of a three-phase microemulsion, lamellar liquid crystals are formed in the dilute region. Unlike other systems in the presence of alcohol as cosurfactant, the HLB composition does not change with dilution, since monolaurin adsorbs almost completely in the interface. The addition of small amounts of ionic surfactant, regardless of the counterion, increases the solubilization of water in W/O microemulsions. The solubilization on oil in O/W microemulsions is not much affected, but structuring is induced and a viscous isotropic phase is formed. At high ionic surfactant concentrations, the single-phase microemulsion disappears and liquid crystals are favored.  相似文献   

11.
《Supramolecular Science》1998,5(3-4):215-221
We studied the structure of poly(vinyl alcohol) (PVA) gels formed in mixtures of dimethyl sulfoxide (DMSO) and water using several scattering techniques such as wide-angle neutron scattering (WANS), small-angle neutron scattering (SANS), ultra-small-angle neutron scattering (U-SANS) and light scattering (LS) to cover a very wide Q range from 10-4 to 10 Å-1. The WANS measurements have revealed that the cross-linking points of the gels are crystallites, and the size and its distribution have been evaluated by the SANS measurements. The SANS results have also shown that the structure observed in the low Q range below 10-2 Å-1 is dominated by a liquid–liquid-phase separation. The early stage of the phase separation has been studied in detail using the time-resolved LS technique, while the late stage has been investigated by the U-SANS technique because the LS measurements cannot access the opaque samples. On the basis of the results, we present a quantitative sketch of the structure of the PVA gel.  相似文献   

12.
The surface active and aggregation behavior of ionic liquids of type [C n mim][X] (1-alkyl-3-methylimidazolium (mim) halides), where n = 4, 6, 8 and [X] = Cl, Br and I was investigated by using three techniques: surface tension, 1H nuclear magnetic resonance (NMR) spectroscopy, small-angle neutron scattering (SANS). A series of parameters including critical aggregation concentrations (CAC), surface active parameters and thermodynamic parameters of aggregation were calculated. The 1H NMR chemical shifts and SANS measurements reveal no evidence of aggregates for the short-chain 1-butylmim halides in water and however small oblate ellipsoidal shaped aggregates are formed by ionic liquids with 1-hexyl and 1-octyl chains. Analysis of SANS data analysis at higher concentrations of [C8mim][Cl] showed that the microstructures consist of cubically packed molecules probably through ππ and hydrogen bond interactions.  相似文献   

13.
The structure of micelles formed by a four component water-in-oil nonionic microemulsion surfactant polyoxyethene (20) sorbitan monoleate (Tween 80), sorbitan monolaurate (Span 20) at ethyl oleate and deuterated water interface have been probed by small-angle neutron scattering (SANS). The total surfactant concentration in each of the samples studied (Tween 80: Span 20) is fixed at 3:2. The deuterated water content is variable at 5–60% w/w. The experimental SANS data from all the seven samples are fit well by spherical micelles interacting with hard sphere potential. Increased deuterated water leads to spherical to lamellar and rod-like micelle geometry featured in the SANS scattering data. The observed change in micelle geometry supports the characterization of phase transition between the self-assembled micelles of the nonionic microemulsion.   相似文献   

14.
The mechanisms of oxide gel formation in inverse micelle and lamellar surfactant systems have been investigated by Small Angle Neutron Scattering (SANS). In the first of these processes colloidal particles and gels are formed by the controlled hydrolysis and condensation of metal alkoxides in a reversed microemulsion system (water in oil), where the water is confined in the microemulsion core. With this route the rate of formation and structure of the oxide gel can be controlled by appropriate choice of the surfactant molecule (e.g. chain length) and the volume fraction of the micelles dispersed in the continuous organic phase. Investigations have been made with the system cyclohexane/water/C8E x , where C8E x is the non-ionic surfactant octylphenyl polyoxyethylene. The influence of the size and structure of the microemulsion has been studied by contrast variation (using deuterated solvents) before and during the reaction to form zirconia gels, and the mechanism of gelation is analysed in terms of percolation of fractal cluster aggregates. The structure of gels formed in surfactant/water lamellar phase systems, using surfactants with greater chain length, has also been investigated by SANS. The application of contrast variation to study such anisotropic bilayer systems, in which oriented gel films can be formed, is illustrated.  相似文献   

15.
The properties of bicontinuous microemulsions, consisting of water, oil, and a surfactant, can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. Here, the influence of the addition of homopolymers (PEP(X) and PEO(X), X=5k or 10k molecular weight) on the dynamics of the surfactant layer is studied with neutron spin echo spectroscopy (NSE). Combining the results with the previous findings for diblock copolymers allows for a better separation of viscosity and bending modulus effects. With the addition of homopolymers, a significant increase of the relaxation rate compared to the pure microemulsion has been observed. The influence on the bending rigidity kappa is measured with NSE experiments. Homopolymer addition reduces kappa by up to Deltakappa approximately -0.5k(B)T, whereas the diblock copolymer yields an increase of kappa by approximately 0.3k(B)T. Comparison of the bending moduli that are obtained by analysis of the dynamics to those obtained from small angle neutron scattering (SANS) sheds light on the different renormalization length scales for NSE and SANS. Variation of the surfactant concentration at otherwise constant conditions of homopolymer or diblock-copolymer concentration shows that NSE results are leading to the pure bending rigidity, while the renormalized one is measured with SANS.  相似文献   

16.
The association between a highly branched polyelectrolyte with ionizable groups, polyethylene imine (PEI), and an anionic surfactant, sodium dodecyl sulfate (SDS), has been investigated at two pH values, using small-angle neutron and light scattering. The scattering data allow us to obtain a detailed picture of the association structures formed. Small-angle neutron scattering (SANS) measurements in solutions containing highly charged PEI at low pH and low SDS concentrations indicate the presence of disklike aggregates. The aggregates change to a more complex three-dimensional structure with increasing surfactant concentration. One pronounced feature in the scattering curves is the presence of a Bragg-like peak at high q-values observed at a surfactant concentration of 4.2 mM and above. This scattering feature is attributed to the formation of a common well-ordered PEI/SDS structure, in analogue to what has been reported for other polyelectrolyte-surfactant systems. Precipitation occurred at the charge neutralization point, and X-ray diffraction measurements on the precipitate confirmed the existence of an ordered structure within the PEI/SDS aggregates, which was identified as a lamellar internal organization. Polyethylene imine has a low charge density in alkaline solutions. At pH 10.1 and under conditions where the surfactant was contrast matched, the SANS scattering curves showed only small changes with increasing surfactant concentration. This suggests that the polymer acts as a template onto which the surfactant molecules aggregate. Data from both static light scattering and SANS recorded under conditions where SDS and to a lower degree PEI contribute to the scattering were found to be consistent with a structure of stacked elliptic bilayers. These structures increased in size and became more compact as the surfactant concentration was increased up to the charge neutralization point.  相似文献   

17.
The aim of this study is to determine the effects of oil solutes and alcohol cosolvents on the structure of oil-in-water microemulsions stabilized by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers. The systems investigated involved the solubilization of 1,3,5-trimethylbenzene or 1,2-dichlorobenzene by P123 (EO(20)-PO(70)-EO(20)) pluronic surfactant micelles in water and water + ethanol solvents. The structures of these swollen micelles were determined by small-angle neutron scattering (SANS). A thermodynamic model was employed to interpret the characterization data. The results of the thermodynamic model for micellization agreed well with the SANS data from samples of micelles swollen by both oils. The model predicted the size of the micelles within 5% accuracy using only one fitting parameter, the micelle polydispersity. Ethanol had significantly different effects on the polymer micelles that contained solubilized oil compared to pure polymer micelles. For pure polymer micelles, the addition of ethanol increased the solubility of the polymer and, therefore, decreased the total volume fraction of micelles, while for polymer-oil aggregates, ethanol tended to have a positive effect on the volume fraction of micelles. SANS results showed that the greatest divergence from pure aqueous solvent results occurred at oil concentrations above the microemulsion stability limit.  相似文献   

18.
The influence of the addition of the cationic surfactant cetylpyridinium chloride (CPyCl) on the structure of the different phases of the ternary surfactant system C(12)E(4)/benzyl alcohol/water in the dilute region has been studied by means of small angle neutron scattering (SANS) and freeze-fracture microscopy (FF-TEM). In the ternary system various different subregions of the L(alpha)-phase were identified as a function of the concentration of the cosurfactant, benzyl alcohol. Addition of small amounts of CPyCl suppresses these different L(alpha)-phases in favor of the one composed of multilamellar vesicles. Addition of somewhat larger amounts (up to 2 mol% relative to the total surfactant concentration) destabilizes the formation of bilayer structures completely and leads to the formation of micellar solutions. This demonstrates that in this surfactant system the incorporation of very small amounts of cationic surfactant has a pronounced and systematic fluence on its phase behavior and its structures. Copyright 2001 Academic Press.  相似文献   

19.
We found that addition of N,N-dimethylformamide (DMF) induces phase separation of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP)-water mixtures. The phase diagram of a DMF-HFIP-water ternary system at 298 K showed that phase separation occurs in a closed-loop area in the water-rich mole fraction range of x(H(2)O) > ~0.4. To clarify the mechanism of DMF-induced phase separation of DMF-HFIP-water mixtures at the molecular level, small-angle neutron scattering (SANS) and (1)H and (13)C NMR measurements were conducted on the mixtures with varying DMF concentrations along a volume ratio of HFIP to water of 1?:?1 (x(S)(HFIP) = 0.147). Additionally, the solvation structure of DMF in water and HFIP-water mixtures was elucidated by molecular dynamics (MD) simulations. The SANS results revealed that the inherent heterogeneity of HFIP-water mixtures is increased with increasing DMF concentration toward the lower phase separation concentration, but decreased when the DMF concentration further increased beyond the upper phase separation one. (1)H and (13)C NMR measurements and MD simulations suggested that preferential solvation of the hydrophobic moiety of DMF by HFIP is the main driver of the phase behaviour of the DMF-HFIP-water system.  相似文献   

20.
Dynamic mechanical thermal analysis (DMTA) and small angle neutron scattering (SANS) have been performed on a number of dimethacrylate (or mono-methacrylate)/diepoxy (or mono-epoxy) interpenetrating polymer networks (IPNs) and semi-IPNs to probe their phase structure. The DMTA behaviour ranged from IPNs that produce one tan δ peak, indicative of a single-phase system, to systems that are clearly phase separated, showing two tan δ peaks. These results were correlated with the SANS data - samples that showed two tan δ peaks also showed scattering in the SANS spectrum. Fitting of the scattering data to the Debye-Bueche scattering model for a phase-separated structure gave a scale to this phase separation of about 180Å. DMTA analysis of the rubbery region of the semi-IPNs revealed that they either had a co-continuous morphology or a matrix phase that was crosslinked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号