首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
In vivo determinations of amino acids are important for improving our understanding of physiological states of biological tissue function and dysfunction. However, the chemically complex matrix of different biological fluids complicates the assay of this important class of molecules. We introduce a method for characterizing the amino acid composition of submicroliter volumes of vitreous humor perfusates. Low-flow push-pull perfusion sampling is compatible with collecting small volume samples in a complicated matrix that are potentially difficult to separate. An efficient, sensitive, and rapid analysis of amino acids from in vivo perfusates of the vitreous is presented with 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde (CBQCA) derivatitation and capillary electrophoresis (CE) separation with laser-induced fluorescence detection (LIF). Derivatization with CBQCA for up to 2 h provided high sensitivity and low detection limits at the nM level. Seventeen amino acids including D-serine (D-Ser) and D-aspartate (D-Asp) were resolved in less than 10 min. Importantly, D-Ser is separated from its enantiomeric pair. Characterization of vitreal amino acids with this assay technique will be useful for understanding ocular diseases and physiological mechanisms in vision.  相似文献   

2.
A sensitive automated procedure for the estimation of the protein content of glycoproteins has been developed using 0.5-mg samples (10–250 μg of protein). The method employs a modification of the conventional amino acid analysis using the unresolved neutral and acidic amino acid peak to estimate the total protein content. Hexosamines, sialic acid, and amide amino acids do not interfere.  相似文献   

3.
A capillary electrophoresis and laser-induced fluorescence (CE-LIF) method was developed to identify and quantitate at amol (10(-18)) concentration. Amino acids were derivatized with 3-(4-carboxybenzoyl)-2-quinoline-carboxaldehyde prior to CE-LIF analysis. The assay was developed by varying the sodium borate concentration, buffer pH, operating voltage, and operating temperature. A run buffer system containing 6.25 mM borate, 150 mM sodium dodecyl sulfate, and 10 mM tetrahydrofuran (pH 9.66) at 25 degrees C, and 24 kV provided analysis conditions for a high-resolution, sensitive, and repeatable assay of amino acids. The rate of derivatization, stability of the labeled amino acids, and amino acid quantitation varied for each amino acid. Amino acids were detected with greater efficiency by this method than automated HPLC amino acid analysis. The repeatability of the assay ranged from 0.3 to 0.9% within a day and 0.7 to 1.5% between analysis days. Bacterial amino acid utilization in a chemically defined medium was successfully monitored using this method. This work defines a sensitive and repeatable method for the detection of amino acids during bacterial metabolism.  相似文献   

4.
A rapid, sensitive, and reproducible pre-column derivatisation procedure has been established for the simultaneous determination of 20 amino acids by high-performance liquid chromatography using fluorescence detection. The amino acids were derivatized using o-phthalaldehyde and 9-fluorenylmethyl-chloroformate reagents. The optimal conditions for simultaneous separation and detection of both primary and secondary amino acids were investigated. The developed method has several advantages, namely automated pre-column derivatization, short analysis time with optimal separation, a simple and economical mobile phase, high level of precision for peak area and retention time, and higher sensitivity with more reliability of peak identification. The biological media development is the key parameter for macromolecule drug discovery. Biological media amino acids in three consecutive discovery batches were determined and the results showed a good agreement with hypothetical value. The method appears suitable for application to measure biological media amino acids at various stages of macromolecule drug discovery.  相似文献   

5.
A fast, simple, and sensitive HPLC method for the determination of free amino acids in tobacco was described. A fully automated sample processor performed precolumn derivatization of both primary and secondary amino acids with o‐phthalaldehyde/3‐mercaptopropionic acid and 9‐fluorenylmethyl chloroformate (FMOC‐Cl), respectively. All reactions were fully automated by means of an injector programme and accomplished in 10 min. Sample preparation consisted of a single step of extraction with 0.1 mol/L HCl at ambient temperature (assisted by sonication) in 30 min, followed by filtration of an aliquot and derivatization. By optimization of sample preparation and HPLC conditions, separation of 20 amino acids in 30 min was achieved. Detection limits ranged from 0.50 to 1.40 μg/g; coefficients of variation ranged from 1.8% to 3.9%; recoveries ranged from 84.6% to 108.5%. The method was applied to the analysis of amino acids contents of tobacco leaves in different varieties and flue‐curing period.  相似文献   

6.
Songmei Hou  Hongbo He  Hongtu Xie 《Talanta》2009,80(2):440-384
Determination of amino acids by mass spectrometry (MS) is an important technique to investigate soil nitrogen transformation and cycling as amino acids being the major nitrogen-containing compounds in soil organic matter. However, researchers have long faced a critical problem in coupling an efficient separation technique to a sensitive MS detection system simultaneously. In this context, we established a new method of liquid chromatography coupled to mass spectrometry based on the 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization method for convenient and accurate quantification of amino acids in soil samples. Baseline separation of 17 amino acid AQC-derivatives was achieved on an XTerraR MS C18 column using ammonium formate as a mobile phase modifier. The concentration of ammonium formate and the pH of the mobile phase were optimized in order to obtain sensitive MS signals. The response curves were linear over the range of 50-800 μmol L−1 amino acids. The detection limits were 0.20-0.60 pmol μL−1 on column and 0.07-0.24 μg g−1 soil under the optimized conditions. The method has been applied successfully for the first time to determine amino acids in 4 types of soil samples, in which 15 amino acids were quantified by MS detector but methionine and cystine were below the detection limits. Both the recovery and the precision were satisfactory. Hence, this proposed technique shows a potential for the identification of amino acids in soil as well as tracing the transformation of soil amino acids with isotope dilution technique in nitrogen cycling investigation.  相似文献   

7.
Molina M  Silva M 《Electrophoresis》2002,23(14):2333-2340
This paper describes a general approach for the in-capillary derivatization of amino compounds and the subsequent sensitive determination of the derivatives by micellar electrokinetic chromatography (MEKC) or capillary zone electrophoresis (CZE) with laser-induced fluorescence (LIF) detection. Amino acids, biogenic amines and amino phosphonic acid-herbicides were chosen as model analytes to evaluate the analytical potential of this approach. Fulfilment of the in-capillary reaction of the analytes using LIF detection hinged on the excellent labeling chemistry of 5-(4,6-dichloro-s-triazin-2-ylamino)fluorescein (DTAF) and the good resolution achieved in the separation of derivatized analytes. Careful optimization of the electrophoretic conditions in the mixing step of this protocol allowed the determination of amino acids, biogenic amines and phosphorus-containing amino acid-herbicides with concentration limits of detection at the nug/L level and relative standard deviations from 3.5 to 5.8%. The whole analysis is carried out within 20 min, resulting in a very simple, fast and practical approach for the fully automated analysis of amino acids and related compounds in low-volume and low-concentration samples.  相似文献   

8.
A rapid, sensitive, and reliable ultra‐performance liquid chromatography (UPLC) coupled with photodiode array detection method was developed for the amino acid analysis of Amur sturgeon (Acipenser schrenckii Brandt). The method uses minimal sample volume and automated online precolumn derivitization of amino acids with fluorescent 6‐aminoquinolyl‐carbamyl reagent. The chromatographic separation was achieved by UPLC, which used a column with 1.7 μm particle packing that enabled higher speed of analysis, peak capacity, greater resolution, and increased sensitivity. Amino acid derivatives obtained under optimal conditions were separated on a Waters UPLC BEH C18 column with Acetonitrile–acetate buffer as mobile phase. Matrix effects were investigated and good linearities with correlation coefficients better than 0.9949 were obtained over a wide range of 5–1000 μmol/L for all amino acids. The simple sample preparation and minimal sample volume make the method useful for the quantitation of 17 amino acids in Amur sturgeon samples. It is concluded that a rapid and robust platform based on UPLC was established, and a total of 17 amino acids of Amur sturgeon were tentatively detected. This method showed good accuracy and repeatability that can be used for the quantification of amino acids in real samples.  相似文献   

9.

Rationale

The fundamental level of stable isotopic knowledge lies at specific atomic positions within molecules but existing methods of analysis require lengthy off‐line preparation to reveal this information. An automated position‐specific isotope analysis (PSIA) method is presented to determine the stable carbon isotopic compositions of the carboxyl groups of amino acids (δ13CCARBOXYL values). This automation makes PSIA measurements easier and routine.

Methods

An existing high‐performance liquid chromatography (HPLC) gas handling interface/stable isotope ratio mass spectrometry system was modified by the addition of a post‐column derivatisation unit between the HPLC system and the interface. The post‐column reaction was optimised to yield CO2 from the carboxyl groups of amino acids by reaction with ninhydrin.

Results

The methodology described produced δ13CCARBOXYL values with typical standard deviations below ±0.1 ‰ and consistent differences (Δ13CCARBOXYL values) between amino acids over a 1‐year period. First estimates are presented for the δ13CCARBOXYL values of a number of internationally available amino acid reference materials.

Conclusions

The PSIA methodology described provides a further dimension to the stable isotopic characterisation of amino acids at a more detailed level than the bulk or averaged whole‐molecule level. When combined with on‐line chromatographic separation or off‐line fraction collection of protein hydrolysates the technique will offer an automated and routine way to study position‐specific carboxyl carbon isotope information for amino acids, enabling more refined isotopic studies of carbon uptake and metabolism.
  相似文献   

10.
In this paper, a fluorescein isothiocyanate (FITC) precolumn derivatization technique in conjunction with an HPLC-in-capillary optical fiber laser-induced fluorescence (HPLC-ICOF-LIF) detection method has been developed for determination of amino acids. The HPLC separation of FITC-labeled amino acids and the ICOF-LIF detection system are studied and optimized. Optimum separation conditions were obtained with a gradient elution program of acetonitrile and phosphate buffer (10 mM, pH 6.8). The ICOF-LIF detection system comprises a 530-??m capillary and a 380-??m optical fiber. The analyses of amino acids display excellent linear relationship between peak area and concentration with correlation coefficients greater than 0.999 and the method also provides good repeatability with RSD < 3%. The detection limits for FITC-tagged amino acids are very low and the lowest LOD for tyrosine is 51 pM. The proposed method has been successfully applied to determination of amino acids in human serum. Our developed HPLC-ICOF-LIF system is cheap, simple, stable, and sensitive which is potentially useful for the formulation analysis and bioanalysis.  相似文献   

11.
A validated two-dimensional HPLC system combining a microbore-monolithic ODS column and a narrowbore-enantioselective column has been established for a sensitive and simultaneous analysis of hydrophilic amino acid enantiomers (His, Asn, Ser, Gln, Arg, Asp, allo-Thr, Glu and Thr) and the non-chiral amino acid, Gly, in biological samples. To accomplish this goal, the amino acids were first tagged with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to the respective fluorescent NBD derivatives which were separated in the first dimension by a micro-reversed-phase column. The automatically collected fractions of the target peaks were then transferred to the second dimension consisting of a Pirkle type enantioselective column generating separation factors higher than 1.13 for all the enantiomeric target analytes. The system was validated using standard amino acids and a rat plasma sample, and analytically satisfactory calibration and precision results were obtained. The present 2D-HPLC system enables the fully automated determination of hydrophilic amino acid enantiomers in mammalian samples. The d-isomers of all the investigated 9 amino acids were found in rat urine but at various enantiomeric ratios.  相似文献   

12.
Abstract

An automated method is described for the determination of free amino acids in biological fluids using precolumn deriva-tization with o-phthalaldehyde and reverse phase high performance liquid chromatography. Chromatographic separation of amino acids is accomplished in 24 minutes (cycle time 44 minutes). As little as 1.5 pmol of most commonly occurring amino acids can be accurately quantified. Accuracy and reproducibility are optimized by automating the derivatization-injection sequence and by correcting for variations in the fluorescence response of each amino acid in each run. A total of 31 analyses can be completed in 24 hours on a single column (7 standards and 24 unknowns). The method can be used in the general determination of free amino acids in biological fluids, or can be further accelerated and used for the quantitation of specific amino acids simply by altering the elution conditions.  相似文献   

13.
This paper describes an automated method for sequence-specific NMR assignment of the aliphatic resonances of protein side chains in small- and medium-sized globular proteins in aqueous solution. The method requires the recording of a five-dimensional (5D) automated projection spectroscopy (APSY-) NMR experiment and the subsequent analysis of the APSY peak list with the algorithm ALASCA (Algorithm for local and linear assignment of side chains from APSY data). The 5D APSY-HC(CC-TOCSY)CONH experiment yields 5D chemical shift correlations of aliphatic side chain C-H moieties with the backbone atoms H(N), N, and C'. A simultaneous variation of the TOCSY mixing times and the projection angles in this APSY-type TOCSY experiment gives access to all aliphatic C-H moieties in the 20 proteinogenic amino acids. The correlation peak list resulting from the 5D APSY-HC(CC-TOCSY)CONH experiment together with the backbone assignment of the protein under study is the sole input for the algorithm ALASCA that assigns carbon and proton resonances of protein side chains. The algorithm is described, and it is shown that the aliphatic parts of 17 of the 20 common amino acid side chains are assigned unambiguously, whereas the remaining three amino acids are assigned with a certainty of above 95%. The overall feasibility of the approach is demonstrated with the globular 116-residue protein TM1290, for which reference assignments are known. For this protein, 97% of the expected side chain carbon atoms and 87% of the expected side chain protons were detected with the 5D APSY-HC(CC-TOCSY)CONH experiment in 24 h of spectrometer time, and all these resonances were correctly assigned by ALASCA. Based on the experience with TM1290, we expect that the approach presented in this work is routinely applicable to globular proteins with sizes up to at least 120 amino acids.  相似文献   

14.
A fully automated exopeptidase digestion procedure for the partial determination of N- and C-terminal peptide/protein sequence is described. The digestion of various substrates with aminopeptidase M, carboxypeptidase A, P or Y was accomplished with the Varian 9090 autosampler's robotic automix routines. The released free amino acids, in addition to free amino acids from acid hydrolysates, were derivatized with phenylisothiocyanate in an automated fashion and subsequently chromatographed on a C18 column for separation and quantitation. The advantages of automating this precolumn phenylisothiocyanate derivatization are the virtual elimination of sample manipulation errors and very reproducible data due to the precise control of the reaction conditions both of which, facilitate the interpretation of the exopeptidase reaction kinetic data.  相似文献   

15.
A new methodology applicable for both high‐resolution laser desorption/ionization mass spectrometry and mass spectrometry imaging of amino acids is presented. The matrix‐assisted laser desorption ionization‐type target containing monoisotopic cationic 109Ag nanoparticles (109AgNPs) was used for rapid mass spectrometry measurements of 11 amino acids of different chemical properties. Amino acids were directly tested in 100,000‐fold concentration change conditions ranging from 100 μg/mL to 1 ng/mL which equates to 50 ng to 500 fg of amino acid per measurement spot. Limit of detection values obtained suggest that presented method/target system is among the fastest and most sensitive ones in laser mass spectrometry. Mass spectrometry imaging of spots of human blood plasma spiked with amino acids showed their surface distribution allowing optimization of quantitative measurements.  相似文献   

16.
Summary Pre-column derivatization followed by reversed-phase HPLC has become widely used as a sensitive and speedy method of amino acid analysis.The technique has been improved by the development of simple and reproducible strategies for derivatization of the amino acids with DABS and for the HPLC analysis. Results obtained indicate that the method has a high sensitivity is well and suited to generate precise amino acid composition information from peptides and proteins.  相似文献   

17.
Andrea Celá  Zdeněk Glatz 《Electrophoresis》2020,41(21-22):1851-1869
Amino acids are essential compounds for living organisms, and their determination in biological fluids is crucial for the clinical analysis and diagnosis of many diseases. However, the detection of most amino acids is hindered by the lack of a strong chromophore/fluorophore or electrochemically active group in their chemical structures. The highly sensitive determination of amino acids often requires derivatization. Capillary electrophoresis is a separation technique with excellent characteristics for the analysis of amino acids in biological fluids. Moreover, it offers the possibility of precapillary, on-capillary, or postcapillary derivatization. Each derivatization approach has specific demands in terms of the chemistry involved in the derivatization, which is discussed in this review. The family of homocyclic o-dicarboxaldehyde compounds, namely o-phthalaldehyde, naphthalene-2,3-dicarboxaldehyde, and anthracene-2,3-dicarboxaldehyde, are powerful derivatization reagents for the determination of amino acids and related compounds. In the presence of suitable nucleophiles they react with the primary amino group to form both fluorescent and electroactive derivatives. Moreover, the reaction rate enables all of the derivatization approaches mentioned above. This review focuses on articles that deal with using these reagents for the derivatization of amino acids and related compounds for ultraviolet-visible spectrometry, fluorescence, or electrochemical detection. Applications in capillary and microchip electrophoresis are summarized and discussed.  相似文献   

18.
A high-performance capillary electrophoresis (HPCE) method based on laser-induced fluorescence detection is presented here. It enables the determination of sulfur-containing amino acids within 15 min. Fluorescence of sulfur-containing amino acids in plasma is linear over a range of 50-150 micromol/L for L-methionine, 5-100 micromol/L for L-homocysteine, and 50-200 micromol/L for L-cysteine. For homocysteine, we were able to detect 1 fmol injected, equivalent to a plasma concentration of 10 nmol/L. A similar sensitivity is present for cysteine, an even lower one being found for methionine. The intra- and interassay relative standard deviations are < 1%. High-performance liquid chromatography (HPLC) methods are commonly employed for quantifying blood concentrations of sulfur-containing amino acids. A comparative analysis of HPCE and HPLC quantitation of homocysteine has been carried out in 61 blood samples. Plasma concentrations measured by HPCE were in good agreement with those obtained employing an HPLC-based method, a satisfactory correlation being observed between the concentrations obtained by the two methods (r= 0.9972). Thus, the HPCE-based procedure presented here for the measurement of sulfur-containing amino acids in plasma is a simple, fast, accurate, and very sensitive method, suitable for routine determinations in clinical studies.  相似文献   

19.
Abstract

An inexpensive, computer-automated HPLC for separation and quantification of amino acids in physiological fluids is described. The system offers fully automated equipment control, data collection, processing and storage capabilities. The component nature of the system and the software flexibility permit extensive system modification, accomodating a wide variety of different separatory procedures which are not possible with many dedicated amino acid analysers. The system uses a lithium-based ion exchange column with post-column o-phthalaldehyde derivatization. A time of 128 minutes, including column regeneration, is required for separation of all amino acids through to arginine. The advantages of post-column derivatization over pre-column derivatization methods for post-separatory amino acid techniques are discussed. Accurate quantification of radiolabel in amino acids is demonstrated.  相似文献   

20.
Haddad R  Mendes MA  Höehr NF  Eberlin MN 《The Analyst》2001,126(8):1212-1215
Trap and release membrane introduction mass spectrometry (T&R-MIMS) using a removable direct insertion membrane probe (DIMP) is employed to determine the total homocysteine concentration (tHcy) directly from human plasma after derivatization with ethyl chloroformate. The method uses no chromatographic separation, is linear, reproducible, and displays limit of quantitation (2 pM) sufficiently below the threshold concentration of tHcy in plasma. It also combines chemical, membrane, and mass spectrometric discrimination, and can be used to determine selected amino acids in human plasma simultaneously. After derivatization with ethyl chloroformate, many amino acids in aqueous solution are observed to be efficiently detected; hence T&R-MIMS is promising as a simple and sensitive technique for simultaneous quantitation of selected amino acids in plasma and urine, and in other aqueous matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号