首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Determination of amino acids in biofluids is a challenging task because of difficulties deriving from their high polarity and matrix interference. A simple, reliable and high‐throughput hydrophilic interaction UHPLC–MS/MS method was developed and validated for the rapid simultaneous determination of 19 free amino acids in rat plasma and urine samples in this paper. Hydrophilic method with a Waters Acquity UPLC BEH Amide column (100 × 2.1 mm,1.7 μm) was used with a gradient mobile phase system of acetonitrile and water both containing 0.2% formic acid. The analysis was performed on a positive electrospray ionization mass spectrometer via multiple reaction monitoring. Samples of 10 μL plasma and 50 μL urine were spiked with three deuterated internal standards, pretreated with 250 μL acetonitrile for one‐step protein precipitation and a final dilution of urine samples. Good linearities (r > 0.99) were obtained for all of the analytes with the lower limit of quantification from 0.1 to 1.2 μg/mL. The relative standard deviation of the intra‐day and inter‐day precisions were within 15.0% and the accuracy ranged from ?12.8 to 12.7%. The hydrophilic interaction UHPLC–MS/MS method was rapid, accurate and high‐throughput and exhibited better chromatography behaviors than the regular RPLC methods. It was further successfully applied to detect 19 free amino acids in biological matrix.  相似文献   

2.
A novel microextraction method based on vortex‐ and CO2‐assisted liquid–liquid microextraction with salt addition for the isolation of furanic compounds (5‐hydroxymethyl‐2‐furaldehyde, 5‐methyl‐2‐furaldehyde, 2‐furaldehyde, 3‐furaldehyde, 2‐furoic and 3‐furoic acids) was developed. Purging the sample with CO2 was applied after vortexing to enhance the phase separation and mass transfer of the analytes. The optimum extraction conditions were: extraction solvent (volume), propyl acetate (125 μL); sample pH, 2.4; vortexing time, 45 s; salt concentration, 25% w/v and purging time, 5 min. The analytes were separated using an ODS Hypersil C18 column (250×4.6 mm i.d, 5 μm) under gradient flow. The proposed method showed good linearities (r2 >0.999), low detection limits (0.08–1.9 μg/L) and good recoveries (80.7–122%). The validated method was successfully applied for the determination of the furanic compounds in concentrated juice (mango, date, orange, pomegranate, roselle, mangosteen and soursop) and dried fruit (prune, date and apricot paste) samples.  相似文献   

3.
A rapid dispersive micro‐solid phase extraction (D‐μ‐SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM‐41 was used as sorbent in d ‐μ‐SPE of the azole compounds from biological fluids. Important D‐μ‐SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB‐C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile–0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v /v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1–10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra‐ and inter‐day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3–114.8%. The MCM‐41‐D‐μ‐SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.  相似文献   

4.
A high‐speed CE system for multiple samples was developed based on a short capillary and an automated sample introduction device consisting of a commercial multi‐well plate and an x‐y‐z translation stage. The spontaneous injection method was used to achieve picoliter‐scale sample injection from different sample wells. Under the optimized conditions, a 40 μm‐long sample plug (corresponding to 78‐pL plug volume) was obtained in a 50 μm id capillary, which ensured both the high separation speed and high separation efficiency. The performance of the system was demonstrated in the separation of FITC‐labeled amino acids with LIF detection. Five FITC‐labeled amino acids including arginine, phenylalanine, glycine, glutamic acid, and asparagine were separated within 15 s with an effective separation length of 1.5 cm. The separation efficiency ranged from 7.96 × 105/m to 1.12 × 106 /m (corresponding to 1.26–0.89 μm plate heights). The repeatability of the peak heights calibrated with an inner standard for different sample wells was 2.4 and 2.7% (n = 20) for arginine and phenylalanine, respectively. The present system was also applied in consecutive separations of 20 different samples of FITC‐labeled amino acids with a whole separation time of less than 6 min.  相似文献   

5.
A rapid micro‐analytical multiresidue method was developed for analysis of pyrethroids (kadethrin K, cypermethrin C and permethrin P) in soil micro‐sample (200 mg). It uses on‐line flow‐through extraction of soil micro‐samples (packed into a short glass column) with a methanol‐aqueous citric acid buffer mixture, successive on‐line SPE preconcentration of analytes from the extract and on‐line RP‐HPLC analysis with UV photometric detection. The separation of pyrethroids is performed on a Purospher RP‐18e column with methanol/water as mobile phase. Effects of sorbent placed at the bottom of a short column holding the soil sample and different kinds of on‐line SPE columns were tested. Besides, the influence of volume of the effluent on the pyrethroids recovery was also studied. Calibration curves were linear over the range assayed from 0.01 to 0.2 μg/mL with correlation coefficients of linear regression (least‐squares method) in the range 0.998–0.999. Recovery studies were carried out at 0.25–1.00 μg/g dry soil fortification level and obtained recoveries were for K 81–84%, C 56–59% and for P 58–63%. Achieved LOD (confidence band) of studied pyrethroids were for large‐volume injection (1 mL) 4.5 ng K, 3.7 ng C, 3.6 ng P or 27 ng/g K, 32 ng/g C and 29 ng/g P in dry soil “solid sampling HPLC”.  相似文献   

6.
A rapid, selective and sensitive UPLC‐UV method was developed and validated for the quantitative analysis of carbamazepine and its epoxide metabolite in rat plasma. A relatively small volume of plasma sample (200 μL) is required for the described analytical method. The method includes simple protein precipitation, liquid–liquid extraction, evaporation, and reconstitution steps. Samples were separated on a Waters Acquity UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) with a gradient mobile phase consisted of 60:40 going to 40:60 (v/v) water–acetonitrile at a flow rate of 0.5 mL/min. The total run time was as low as 6 min, representing a significant improvement in comparison to existing methods. Excellent linearity (r2 > 0.999) was achieved over a wide concentration range. Close to complete recovery, short analysis time, high stability, accuracy, precision and reproducibility, and low limit of quantitation were demonstrated. Finally, we successfully applied this analytical method to a pre‐clinical oral pharmacokinetic study, revealing the plasma profiles of both carbamazepine and carbamazepine‐10,11‐epoxide following oral administration of carbamazepine to rats. The advantages demonstrated in this work make this analytical method both time‐ and cost‐efficient approach for drug and metabolite monitoring in the pre‐clinical/clinical laboratory. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A robust ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the determination of morphine‐6‐d ‐glucuronide (M6G), morphine‐3‐d ‐glucuronide (M3G) and morphine (MOR) in human plasma and urine has been developed and validated. The analytes of interest were extracted from plasma by protein precipitation. The urine sample was prepared by dilution. Both plasma and urine samples were chromatographed on an Acquity UPLC HSS T3 column using gradient elution. Detection was performed on a Xevo TQ‐S tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. Matrix interferences were not observed at the retention time of the analytes and internal standard, naloxone‐D5. The lower limits of quantitation of plasma and urine were 2/0.5/0.5 and 20/4/2 ng/mL for M6G/M3G/MOR, respectively. Calibration curves were linear over the concentration ranges of 2–2000/0.5–500/0.5–500 and 20–20,000/4–4000/2–2000 ng/mL for M6G/M3G/MOR in plasma and urine samples, respectively. The precision was <7.14% and the accuracy was within 85–115%. Furthermore, stability of the analytes at various conditions, dilution integrity, extraction recovery and matrix effect were assessed. Finally, this quantitative method was successfully applied to the pharmacokinetic study of M6G injection in Chinese noncancer pain patients.  相似文献   

8.
A novel, simple, and rapid vortex‐assisted hollow‐fiber liquid‐phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high‐performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3–50.0 and 0.4–50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0–11.0 and 5.0–7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples.  相似文献   

9.
This paper describes the use of graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane as a solid‐phase extraction sorbent for the determination of organic acids. The resultant graphene oxide/silica modified with nitro‐substituted tris(indolyl)methane was characterized by FTIR spectroscopy and adsorption experiments. Solid‐phase extraction parameters such as sorbent type, sample solution pH, sample loading rate, eluent salt concentration, eluent methanol concentration, elution rate, sample loading, and elution volume were optimized. The method showed good precision, accuracy, sensitivity, and linear response for organic acids analysis over a concentration range of 1–100 μg/L for benzoic acid, p‐methoxybenzoic acid, and salicylic acid and 5–100 μg/L for the remaining organic acids (cinnamic acid, p‐chlorobenzoic acid, and p‐bromobenzoic acid) with coefficients of determination (r2) of higher than 0.9957. Limits of detection from 0.50 to 1.0 μg/L for six organic acids were achieved. The developed method was successfully applied to determine organic acids in real samples.  相似文献   

10.
Liquid‐phase microextraction (LPME) is a sample preparation technique based on disposable polypropylene hollow fibres, which results in efficient sample clean‐up and high preconcentration. The present paper describes the combination of LPME with LC‐MS utilising electrospray ionisation for high sensitivity. Nine antidepressant drugs were extracted from 50 or 500 μL of plasma or whole blood samples, through a thin layer of dodecyl acetate immobilised in the pores of the hollow fibre, and into 15 μL of 200 mM formic acid as acceptor solution inside the hollow fibre. Analyte recoveries in the range 12–68% and 9–52% were obtained from 50 μL of plasma and whole blood respectively. The acceptor solution (15 μL) was diluted with 60 μL of 5 mM ammonium formate pH = 2.7 prior to injection into the LC‐MS system. The system was qualitatively investigated for matrix effects utilising a post‐column infusion system. Whole blood from 5 different persons was cleaned‐up by LPME and injected onto the analytical column while a solution of the 9 model compounds was continuously infused post‐column. No signs of ion suppression were seen for any of the model compounds. Limits of quantification (S/N = 10) were in the low ng/mL range for 6 of the 9 model compounds utilising a whole blood sample volume of only 50 μL. The repeatability of the extractions was investigated utilising paroxetine as internal standard. Acceptable RSDs (%) were obtained (< 20%) for 5 of the antidepressants. By increasing the sample volume from 50 to 500 μL of whole blood RSDs below 20% (3–16%) were observed for all 8 antidepressants.  相似文献   

11.
A rapid, sensitive and rugged solid‐phase extraction ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed for determination of paroxetine in human plasma. The procedure for sample preparation includes simple SPE extraction procedure coupled with Hypersil Gold C18 column (100 mm ? 2.1 mm, i.d., 1.9 μm) with isocratic elution at a flow‐rate of 0.350 mL/min and fluoxetine was used as the internal standard. The analysis was performed on a triple‐quadrupole tandem mass spectrometer by multiple reactions monitoring mode via electrospray ionization. Using 500 μL plasma, the methods were validated over the concentration range 0.050–16.710 ng/mL for paroxetine, with a lower limit of quantification of 0.050 ng/mL. The intra‐ and inter‐day precision and accuracy of the quality control samples were within 10.0%. The recovery was 69.2 and 74.4% for paroxetine and fluoxetine respectively. Total run time was only 1.9 min. The method was highly reproducible and gave peaks with excellent chromatography properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, robust, and rapid LC‐MS/MS method was developed for the quantitation of U0126 and validated in rat plasma. Plasma samples (20 μL) were deproteinized using 200 μL ACN containing 30 ng/mL of chlorpropamide, internal standard. Chromatographic separation performed on an Agilent Poroshell 120 EC‐C18 column (4.6 × 50 mm, 2.7 μm particle size) with an isocratic mobile phase consisting of a 70:30 v/v mixture of ACN and 0.1% aqueous formic acid. Each sample was run at 0.6 mL/min for a total run time of 2 min per sample. Detection and quantification were performed using a mass spectrometer in selected reaction‐monitoring mode with positive ESI at m/z 381 → 123.9 for U0126 and m/z 277 → 175 for the internal standard. The standard curve was linear over a concentration range of 20–5000 ng/mL with correlation coefficients greater than 0.9965. Precision, both intra‐ and interday, was less than 10.1% with an accuracy of 90.7–99.4%. No matrix effects were observed. U0126 in rat plasma degraded approximately 41.3% after 3‐h storage at room temperature. To prevent degradation, sample handling should be on an ice bath and all solutions kept at 4°C. This method was successfully applied to a pharmacokinetic study of U0126 at various doses in rats.  相似文献   

13.
Using bamboo‐activated charcoal as SPE adsorbent, a novel SPE method was developed for the sensitive determination of tetrabromobisphenol A and bisphenol A in environmental water samples by rapid‐resolution LC‐ESI‐MS/MS. Important parameters influencing extraction efficiency, including type of eluent, eluent volume, sample pH, volume and flow rate, were investigated and optimized. Under the optimal extraction conditions (eluent: 8 mL methanol, pH: 7; flow rate: 4 mL/min; sample volume: 100 mL), low LODs (0.01–0.02 ng/mL), good repeatability (6.2–8.3%) and wide linearity range (0.10–10 ng/mL) were obtained. Satisfied results were achieved when the proposed method was applied to determine the two target compounds in real‐world environmental water samples with spiked recoveries over the range of 80.5–119.8%. All these facts indicate that trace determination of tetrabromobisphenol A and bisphenol A in real‐world environmental water samples can be realized by bamboo‐activated charcoal SPE‐rapid resolution‐LC‐ESI‐MS/MS.  相似文献   

14.
A stationary phase bearing both bridged bis‐ureido and free amino groups (USP‐HILIC‐NH2–2.5SP) for high‐speed hydrophilic interaction liquid chromatography separations was prepared using a one‐pot two‐step procedure starting from 2.5 μm totally porous silica particles. Highly polar compounds, such as polyols, hydroxybenzoic acids, and sugars, were successfully analyzed in shorter times and with higher peak efficiency, when compared to results obtained with a bidentate urea‐type column packed with 5 μm particles. Increased sugarophilicity and better peak shape were attested for the USP‐HILIC‐NH2–2.5SP column (100 × 3.2 mm id) when compared with two commercially available UHPLC columns, namely an acquity BEH amide packed with totally porous 1.7 μm microparticles and a HILIC Kinetex column packed with core–shell 2.6 μm particles. Finally, the new column was employed in the separation of complex mixture of sugars (mono‐, di‐, and oligosaccharides) and in the analysis of beer samples. The resulting chromatograms showed good selectivity and overall resolution, while the catalyzing effect of the free amino moieties resulted in excellent peak shapes and in the absence of split peaks due to sugar anomerization phenomena.  相似文献   

15.
A simple, rapid and accurate high‐performance liquid chromatography method with ultraviolet–visible detection was developed for the determination of five amino acid neurotransmitters – aspartate, glutamic acid, glycine, taurine and γ‐aminobutyric acid – in rat hippocampi with pre‐column derivatization with 4‐fluoro‐7‐nitrobenzofurazan. Several conditions which influenced derivatization and separation, such as pH, temperature, acetonitrile percentage mobile phase and flow rate, were optimized to obtain a suitable protocol for amino acids quantification in samples. The separation of the five neurotransmitter derivatives was performed on a C18 column using a mobile phase consisting of phosphate buffer (0.02 mol/L, pH 6.0)–acetonitrile (84:16, v/v) at a flow rate of 1.0 mL/min with the column temperature at 30°C. The detection wavelength was 472 nm. Without gradient elution, the five neurotransmitter derivatives were completely separated within 15 min. The linear relation was good in the range from 0.50 to 500 µmol/L, and the correlation coefficients were ≥0.999. Intra‐day precision was between 1.8 and 3.2%, and inter‐day precision was between 2.4 and 4.7%. The limits of detection (signal‐to‐noise ratio 3) were from 0.02 to 0.15 µmol/L. The established method was used to determine amino acid neurotransmitters in rat hippocampi with satisfactory recoveries varying from 94.9 to 105.2%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
An HPLC‐fluorescence (FL) method for determination of sulfur‐containing amino acids such as homocysteine (Hcy), methionine (Met) and cysteine (Cys) in human plasma was developed. The sulfur‐containing amino acids were labeled with 4‐(N,N‐dimethylaminosulfonyl)‐7‐fluoro‐2,1,3‐benzoxadiazole (DBD‐F). Calibration curves in the range of 1–100 µm (Hcy and Met) and 5–500 µm (Cys) indicated good linearities (r ≥ 0.998). The limits of detection at a signal‐to‐noise ratio of 3 were 0.13 (Hcy), 0.02 (Met) and 0.11 µm (Cys), respectively. Acceptable results for accuracy and precision of intra‐ and inter‐day measurements were obtained. The results of Hcy and Cys obtained by the proposed method indicated good correlations with the conventional method (r > 0.911, n = 20). Furthermore, the method was applied to determination of the sulfur‐containing amino acids in maternal plasma (n = 200) after delivery. The concentrations of Hcy, Met and Cys as a median (inter quartile range, Q1 and Q3) were 5.37 (3.32–7.79) μm , 25.20 (20.10–31.06) μm and 147.25 (102.81–189.31) μm , respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐speed separation method of capillary MEKC with LIF detection had been developed for separation and determination of amino acids in laver. The CE system comprised a manual slotted‐vial array (SVA) for sample introduction that could improve the separation efficiency by reducing injection volume. Using a capillary with 80 mm effective separation length, the separation conditions for amino acids were optimized. Applied with the separation electric field strength of 300 V/cm, the ten amino acids could be completely separated within 2.5 min with 10 mol/L Na2HPO4–NaOH buffer (pH = 11.5) including 30 mmol/L SDS. Theoretical plates for amino acids ranged from 72 000 to 40 000 (corresponding to 1.1–2.0 μm plate heights) and the detection limits were between 25 and 80 nmol/L. Finally, this method was applied to analyze the composition of amino acids in laver and eight known amino acids could be found in the sample. The contents of five amino acids, tyrosine, glutamic acid, glycine, lysine, and aspartic acid that could be completely separated in real sample were determined. The recoveries ranged from 82.3% to 123% that indicated the good reliability for this method in laver sample analysis.  相似文献   

18.
A sensitive and efficient analytical method for triclosan (TCS) determination in water, which involves enrichment with bamboo‐activated charcoal and detection with HPLC‐ESI‐MS, was developed. The influence of several operational parameters, including the eluant and its volume, the flow rate, the volume andacidity of the sample, and the amount of bamboo‐activated charcoal, were investigated and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.02–20 μg/L, with correlation coefficients (r2) >0.9990. The limit of detection was 0.002 μg/L based on the ratio of chromatographic signal to baseline noise (S/N = 3). The spiked recoveries of TCS in real water samples were achieved in the range of 97.6–112.5%. The proposed method was applied to analyze TCS in real aqueous samples. All the surface water samples collected in Xiaoqing River had detectable levels of TCS with concentrations of 42–197 ng/L.  相似文献   

19.
(+)‐Pinoresinol 4,4′‐di‐O‐βD ‐glucopyranoside ((+)‐PDG) is one of the major lignans with various pharmacological activities which could be isolated from Duzhong and other plant species. In this study, a diastereomeric impurity, (?)‐pinoresinol 4,4′‐di‐O‐βD ‐glucopyranoside ((?)‐PDG), the main impurity was identified in (+)‐PDG chemical reference substance (CRS) and a reliable chromatographic method for rapid purity determination of (+)‐PDG CRS was firstly developed. The optimal chromatographic condition was found to be using ACN/1,4‐dioxane–water (2.5:6:91.5, v/v/v) as mobile phase on a Waters Acquity UPLC HSS T3 column (2.1 mm×100 mm, 1.8 μm) with column temperature of 37°C. The method was validated and applied to determine the chromatographic purity of five (+)‐PDG CRS samples. The content of (?)‐PDG in four commercial (+)‐PDG CRS was 8.47–20.30%, whereas no (?)‐PDG was detected in our in‐house prepared (+)‐PDG CRS in which purity was confirmed to be 99.80%. The above results confirmed that this method is fast and highly efficient for purity determination of the (+)‐PDG CRS.  相似文献   

20.
Sildenafil is used to treat pulmonary hypertension in neonatal and pediatric patients. Pharmacokinetic studies in these patients are complicated by the limited sample volume. We present the validation results of an assay method to quantitate sildenafil and desmethylsildenafil simultaneously in 50 µL of plasma. Deuterated sildenafil was used as an internal standard. After liquid–liquid extraction, analytes were separated on an ultra‐performance liquid chromatography (UPLC)‐column and quantified via tandem mass spectrometry. The calibration range was linear, with acceptable accuracy and a precision of <15% for both compounds. The lower limits of quantification were 1 ng/mL. Matrix effects were present, but inter‐plasma batch variability was under 12%. The method was successfully applied to samples from a pharmacokinetic study into sildenafil pharmacokinetics in neonates, making maximum use of the limited number and amount of plasma samples available. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号