首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effects of charged species on proton‐coupled electron‐transfer (PCET) reaction should be of significance for understanding/application of important chemical and biological PCET systems. Such species can be found in proximity of activated complex in a PCET reaction, although they are not involved in the charge transfer process. Reported here is the first study of the above‐mentioned effects. Here, the effects of Na+, K+, Li+, Ca2+, Mg2+, and Me4N+ observed in PCET reaction of ascorbate monoanions with hexacyanoferrate(III) ions in H2O reveal that, in presence of ions, this over‐the‐barrier reaction entered into tunneling regime. The observations are: a) dependence of the rate constant on the cation concentration, where the rate constant is 71 (at I = 0.0023), and 821 (at 0.5M K+), 847 (at 1.0M Na+), and 438 M ?1 s?1 (at 0.011M Ca2+); b) changes of kinetic isotope effect (KIE) in the presence of ions, where kH/kD=4.6 (at I = 0.0023), and 3.4 (in the presence of 0.5M K+), 3.3 (at 1.0M Na+), 3.9 (at 0.001M Ca2+), and 3.9 (at 0.001M Mg2+), respectively; c) the isotope effects on Arrhenius pre‐factor where AH/AD=0.97 (0.15) in absence of ions, and 2.29 (0.60) (at 0.5M Na+), 1.77 (0.29) (at 1.0M Na+), 1.61 (0.25) (at 0.5M K+), 0.42 (0.16) (at 0.001M Ca2+) and 0.16 (0.19) (at 0.001M Mg2+); d) isotope differences in the enthalpies of activation in H2O and in D2O, where ΔΔH?(D,H)=3.9 (0.4) kJ mol?1 in the absence of cations, 1.3 (0.6) at 0.5M Na+, 1.8 (0.4) at 0.5M K+, 1.5 (0.4) at 1.0M Na+, 5.5 (0.9) (at 0.001M Ca2+), and 7.9 (2.8) (at 0.001M Mg2+) kJ mol?1; e) nonlinear proton inventory in reaction. In the H2O/dioxane 1 : 1, the observed KIE is 7.8 and 4.4 in the absence and in the presence of 0.1M K+, respectively, and AH/AD=0.14 (0.03). The changes when cations are present in the reaction are explained in terms of termolecular encounter complex consisting of redox partners, and the cation where the cation can be found in a near proximity of the reaction‐activated complex thus influencing the proton/electron double tunneling event in the PCET process. A molecule of H2O is involved in the transition state. The resulting ‘configuration’ is more ‘rigid’ and more appropriate for efficient tunneling with Na+ or K+ (extensive tunneling observed), i.e., there is more precise organized H transfer coordinate than in the case of Ca2+ and Mg2+ (moderate tunneling observed) in the reaction.  相似文献   

2.
The mass spectra of several alkyl phenyl tellurides, C6H5TeR (R = CH3, CD3, C2H5, n-C3H7, i-C3H7 and n-C4H9) have been studied with special emphasis on the fragmentation patterns involving cleavage of the alkyl and aryl tellurium–carbon bonds. Each compound exhibited intense parent ions. The rearrangement ions [C6H6Te]+? and [C6H6]+? were found in the spectra of phenyl ethyl and higher tellurides. Two other rearrangement ions [HTe]+ and [C7H7]+ were observed in the spectrum of each compound. Examination of the mass spectrum of phenyl methyl-d3 telluride demonstrated that the [HTe]+ ions derive hydrogen from the phenyl group.  相似文献   

3.
Positive and negative cluster ions in methanol have been examined using a direct fast atom bombardment (FAB) probe technique. Positive ion (CH3OH)IIH + clusters with n = 1-28 have been observed and their clusters are the dominant ions in the low-mass region. Cluster-ion reaction products (CH3OH)II(H2O)H+ and (CH3OH)II(CH3OCH3)H+ are observed for a wide range of n and the abundances of these ions decrease with increasing n. The negative ion (CH3OH)II(CH3O)? clusters are also readily observed with n = 0-24 and these form the most-abundant negative ion series at low n. The (CH3OH)II(CH2O)?, (CH3OH)II(HIIO)(CH2O)? and (CH3OH)II(H2OXCH3O)? cluster ions are formed and the abundances of these ions approach those of the (CH3OH)II(CH3O)? ion series at high n. Cluster-ion structures and energetics have been examined using semi-empirical molecular orbital methods.  相似文献   

4.
The 70 eV electron ionization mass spectra of polycyclic aromatic compounds are characterized by the presence of relatively stable multiply charged molecular ions [M]n+ (n=2–4). When generated from the compounds benzene, napthalene, anthracene, phenanthrene, 2,3-benzanthracene, 1,2-benzanthracene, chrysene, 9,10-benzophenanthrene and pyrene, the relative abundances of the multiply charged ions increase dramatically with the number of rings. These compounds form multiply charged molecular ions (n=2, 3) which undergo unimolecular decompositions indicative of considerable ionic rearrangement. The main charge separation processes observed here [M]2+→m1++m2+, [M]3+˙→m3++m→+m42+) involve, in almost every case, one or more of the products [CH3]+, [C2H3]+˙ and [C3H3]+. This suggests the existence of preferred structures amongst the metastable parent ions. Information on the relative importance of the various fragmentation pathways is presented here along with translational energy release data. Some tentative structural information about the metastable ions has been inferred from the translational energy release on the assumption that the released energy is due primarily to coulombic repulsion within the transition state structure. For the triply charged ions these interpretations have necessitated the use of a coulombic repulsion model which takes account of an extra charge. Vertical ionization energies for the process [M]n++G→[M](n+1)+G+e? (charge stripping) have also been determined where possible for n=1 and 2 and the results from these experiments allow the derivation of simple empirical equations which relate successive ionization energies for the formation of [M]2+ and [M]3+˙ to the appearance energy of [M]+˙.  相似文献   

5.
The formation constants of Li+, N+, K+, Mg2+ and Ca2+ phenoxyacetate complexes were determined potentiometrically using an (H+)-glass electrode at 10, 25, 37 and 45°C, at several ionic strengths, in the range 0.04?I? 0.9 mol 1?1. Simple empirical equations for the dependence of the formation constants on ionic strength were derived. From the temperature coefficients, estimates of ΔHo and ΔSo were obtained.  相似文献   

6.
Ionic liquids have become commonplace materials found in research laboratories the world over, and are increasingly utilised in studies featuring water as co‐solvent. It is reported herein that proton activities, aH+, originating from auto‐protolysis of H2O molecules, are significantly altered in mixtures with common ionic liquids comprised of Cl?, [HSO4]?, [CH3SO4]?, [CH3COO]?, [BF4]?, relative to pure water. paH+ values, recorded in partially aqueous media as ?log(aH+), are observed over a wide range (~0–13) as a result of hydrolysis (or acid dissociation) of liquid salt ions to their associated parent molecules (or conjugate bases). Brønsted–Lowry acid–base character of ionic liquid ions observed is rooted in equilibria known to govern the highly developed aqueous chemistry of classical organic and inorganic salts, as their well‐known aqueous pKs dictate. Classical salt behaviour observed for both protic and aprotic ions in the presence of water suggests appropriate attention need be given to relevant chemical systems in order to exploit, or avoid, the nature of the medium formed.  相似文献   

7.
Cluster ions from fast atom bombardment of liquid alcohols and nitriles were examined using a continuous-flow technique. Protonated molecular MnH+ species are the dominant cluster ions observed in molecules of formula M. The abundances of the MnH+ cluster ions decrease monotonically with increasing n, and within a homologous series the MnH+ abundance diminishes more rapidly for higher molecular mass compounds. Reaction products (ROH)n(H2O)H+ and (ROH)n(ROR)H+ are observed also in the case of alcohols, and the ion abundances decrease with increasing n. Radiation damage yields fragment ions and ionic alkyl reaction products which are captured in solvent clusters. Semi-empirical molecular orbital methods were used to examine the energetics of cluster ion formation and decomposition pathways. Metastable decomposition processes exhibit only evaporative loss of monomers, with the probability of loss increasing sharply with n. The evaporative ensemble model of Klots was used to predict the cluster size-dependent trends of metastable dissociation processes observed for alcohol and nitrile cluster ions.  相似文献   

8.
Negative chemical ionization mass spectrometry is used as a probe to examine reactions between hydrocarbon radicals and metal complexes in the gas phase. The methane negative chemical ionization mass spectra of 27 complexes of cobalt(II ), nickel(II ) and copper(II ) in the presence of O4, O2N2 and N4 donor atom sets are characterized by two dominant series of adduct ions of the form [M + CnH2n]? and [M + CnH2n+1]? at m/z values above the molecular ion, [M]?. Insertion of the CH radical into the ligand followed by radical/radical recombination and electron capture is proposed as the major mechanism leading to the formation of [M + CnH2n]? adduct ions. A second pathway involves ligand substitution by CnH2n+1 radicals concomitant with H elimination and electron capture. Oxidative addition at the metal followed by ionization is suggested as the principal pathway for the formation of [M + CnH2n+1]? adduct ions.  相似文献   

9.
Electronically excited states of magnesium-water cluster ions, Mg+(H2O) n ,n=1–5, are studied by photodissociation after mass selection. The observed photodissociation spectra are assigned to the2P–2S type transitions localized on the Mg+ ion with the aid of ab initio CI calculations. In addition to evaporation of water molecules, photoinduced intracluster reaction to produce MgOH+(H2O) n is found to occur efficiently, with pronounced size dependence. The intriguing features observed in the mass spectrum of nascent cluster ions are discussed in relation to the stepwise solvation of this reaction.  相似文献   

10.

This paper describes a miniaturized multisensor platform (MP-ISES) consisting of electrodes: a reference one (RE) and ion-selective electrodes (ISEs) for monitoring Na+, K+, Ca2+, Mg2+, Cl, and SCN ions and pH in human saliva. Gold electrode surface was modified by deposition of two layers: electrosynthesized PEDOT:PSS forming an intermediate layer, and ion-selective membrane. The developed ISEs were characterized by a wide linear range and sensitivity consistent with the Nernst model. The entire MP-ISEs are characterized by satisfactory metrological parameters demonstrating their applicability in biomedical research, in particular in measurements concerning determination of ionic profiles of saliva. Saliva samples of 18 volunteers aged from 20 to 26 participating in a month experiment had been daily collected and investigated using the MP-ISEs assigned individually to each person. Personalized profiles of ions (ionograms) in saliva, such as Na+, K+, Ca2+, Mg2+, Cl, SCN, and H+, were obtained.

  相似文献   

11.
The 12.1 eV, 75°C electron impact mass spectra of 24 urethanes, RNHCO2C2H5 [R ? H, C2H2n +1 (n = 1-8), CH2?CHCH2, Ph, PhCH2 and PhCH2CH2], and seven symmetrically disubstituted urethanes R2NCO2C2H5 (R ? Cn H2n + 1 (n = 1?4)) are reported and discussed. All 31 spectra show appreciable molecular ion peaks. For n ?Cn H2n +1 NHCO2C2H5, M+ ˙ usually is the most abundant ion in the spectrum. A peak at m/z 102 of comparable intensity also is present; this corresponds to formal cleavage of the bond connecting the α- and β-carbon atoms in the N-alkyl group, though it is unlikely that the daughter ion has the structure [CH2?NHCO2C2H5]+. In the RNHCO2C2H5 series, branching at the α-carbon atom enhances the relative abundance of the ion arising by notional α-cleavage at the expense of that of M+ ˙. Formal cleavage of the bond between β- and γ-carbon atoms occurs to some extent for [RNHCO2C2H5]+˙ ions; this reaction provides information on the degree of branching at the β-carbon, especially if metastable molecular ions are considered. The higher n-CnH2n +1NHCO2C2H5 (n = 5?8) urethanes exhibit two other significant ions in their mass spectra. First, there is a peak at [M ? C2H5]+. Secondly, a peak is present at m/z 90; the most plausible structure for this ion is [H2N(HO)COC2H5]+, arising by double hydrogen transfer from the alkyl group and expulsion of a [CnH2n ?1]˙ radical. Ions originating from secondary decomposition of the primary ionic species are generally of only very low abundance in these spectra.  相似文献   

12.
The kinetics of the redox reaction between mandelic acid (MA) and ceric sulfate have been studied in aqueous sulfuric acid solutions and in H2SO4? MClO4 (M+ = H+, Li+, Na+) and H2SO4? MHSO4 (M+ = Li+, Na+, K+) mixtures under various experimental conditions of total electrolyte concentration (that is, ionic strength) and temperature. The oxidation reaction has been found to occur via two paths according to the following rate law: rate = k[MA] [Ce(IV)], where k = k1 + k2/(1 + a)2[HSO4?]2 = k1 + k2/(1 + 1/a)2[SO42?]2, a being a constant. The cations considered exhibit negative specific effects upon the overall oxidation rate following the order H+ ? Li+ < Na+ < K+. The observed negative cation effects on the rate constant k1 are in the order Na+ < Li+ < H+, whereas the order is in reverse for k2, namely, H+ ? Li+ < Na+. Lithium and hydrogen ions exhibit similar medium effects only when relatively small amounts of electrolytes are replaced. The type of the cation used does not affect significantly the activation parameters.  相似文献   

13.
N-Acetylcysteine and nine N-acetylcysteine conjugates of synthetic origin were characterized by positive- and negative-ion plasma desorption mass Spectrometry. For sample preparation the electrospray technique and the nitrocellulose spin deposition technique were applied. The fragmentation of these compounds, which are best seen as S-substituted desaminoglycylcysteine dipeptides, shows a similar behaviour to that of linear peptides. In the positive-ion mass spectra intense protonated molecular ion peaks are observed. In addition, several sequence-specific fragment ions (A+, B+, [Y + 2H]+, Z+), immonium ions (I+) and a diagnostic fragment ion for mercap-turic acids (RM+) are detected. The negative-ion mass spectra exhibit deprotonated molecular ions and in contrast only one fragment ion corresponding to side-chain specific cleavage ([RXS]?) representing the xenobiotic moiety. In the case of a low alkali metal concentration on the target, cluster molecular ions of the [nM + H]+ or [nM - H]? ion type (n = 1-3) are observed. The analysis of an equimolar mixture of eight N-acetylcysteine conjugates shows different quasi-molecular ion yields for the positive- and negative-ion spectra.  相似文献   

14.
Reactions of M+(H2O)n (M=V, Cr, Mn, Fe, Co, Ni, Cu, Zn; n≤40) with NO were studied by Fourier transform ion cyclotron resonance (FT‐ICR) mass spectrometry. Uptake of NO was observed for M=Cr, Fe, Co, Ni, Zn. The number of NO molecules taken up depends on the metal ion. For iron and zinc, NO uptake is followed by elimination of HNO and formation of the hydrated metal hydroxide, with strong size dependence. For manganese, only small HMnOH+(H2O)n?1 species, which are formed under the influence of room‐temperature black‐body radiation, react with NO. Here NO uptake competes with HNO formation, both being primary reactions. The results illustrate that, in the presence of water, transition‐metal ions are able to undergo quite particular and diverse reactions with NO. HNO is presumably formed through recombination of a proton and 3NO? for M=Fe, Zn, preferentially for n=15–20. For manganese, the hydride in HMnOH+(H2O)n?1 is involved in HNO formation, preferentially for n≤4. The strong size dependence of the HNO formation efficiency illustrates that each molecule counts in the reactions of small ionic water clusters.  相似文献   

15.
For mixed magnesium phosphate hydrate complexes containing Mg2+ and Mg+ cations and HPO42−, HPO4, and H2P2O72− anions, theoretical analysis of the electronic structure and energies has been performed at the model level in order to predict the actual role of these systems in various reactions that occur in the catalytic sites of ATP synthesizing enzymes. The calculations (DFT/B3LYP, MP2 with the 6–31G* basis set) of isolated aqua complexes Mg(H2O) n p (n = 1−6, p = 0, +1, +2) show that their relative stability monotonically increases with increasing n in each series and sharply decreases at a given n in going from the charged systems of Mg2+ (4–16 eV) and Mg+ (2–7 eV) to the neutral systems of Mg (<2 eV). An even higher stability is predicted for mixed magnesium complexes. The energies of fragmentation of mixed Mg2+ complexes into singlet phosphate and Mg2+-containing fragments at n = 0–4 are within 6–27 eV, and the energies of fragmentation into the corresponding radical ions are within 3–10 eV; for the Mg+ complexes, the fragmentation energies are also high (6–14 eV). The reasons for the enhanced stability of the complexes of both types have been analyzed with allowance for the predicted specific features of the electron density redistribution upon complex formation. Typical changes in the geometry of the P- and Mg-containing fragments caused by formation of mixed complexes have been discussed in the framework of the vibronic model of heteroligand systems. The high stability of all mixed magnesium complexes relative to various fragmentation products presumably rules out any dissociative processes in them in the course of ATP synthesis with the participation of phosphorylating enzymes.  相似文献   

16.
Na-montmorillonites were exchanged with Li+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, and Ba2+, while Ca-montmorillonites were treated with alkaline and alkaline earth ions except for Ra2+ and Ca2+. Montmorillonites with interlayer cations Li+ or Na+ have remarkable swelling capacity and keep excellent stability. It is shown that metal ions represent different exchange ability as follows: Cs+?>?Rb+?>?K+?>?Na+?>?Li+ and Ba2+?>?Sr2+?>?Ca2+?>?Mg2+. The cation exchange capacity with single ion exchange capacity illustrates that Mg2+ and Ca2+ do not only take part in cation exchange but also produce physical adsorption on the montmorillonite. Although interlayer spacing d 001 depends on both radius and hydration radius of interlayer cations, the latter one plays a decisive role in changing d 001 value. Three stages of temperature intervals of dehydration are observed from the TG/DSC curves: the release of surface water adsorbed (36?C84?°C), the dehydration of interlayer water and the chemical-adsorption water (47?C189?°C) and dehydration of bound water of interlayer metal cation (108?C268?°C). Data show that the quantity and hydration energy of ions adsorbed on montmorillonite influence the water content in montmorillonite. Mg2+-modified Na-montmorillonite which absorbs the most quantity of ions with the highest hydration energy has the maximum water content up to 8.84%.  相似文献   

17.
[CnH2n?3]+ and [CnH2n?4]+·(n = 7, 8) ions have been generated in the mass spectrometer from CnH2n?3 Br (n = 7, 8) precursors and from two steroids. The relative abundances of competing ‘metastable transitionss’ indicate (partial) isomerization to a common structure (or mixture of structures) prior to decomposition in most examples of all four types of ions. In contrast, [C8H10O]+· and [C8H12O]+· ions, generated from different sources as molecular ions and by fragmentation of steroids, do not decompose through common-intermediates.  相似文献   

18.
For more than three decades, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) has been used for elemental depth profiling. In recent years, cluster primary ion sources (principally, C60+, Bin+, and Aun+) have become widely available, and they can greatly enhance the signal intensity of molecular ions (10–1000 times). Understanding the performance of cluster ion analysis beams used in elemental depth profiling can greatly assist normal ToF‐SIMS users in choosing the optimal analysis beam for depth profiling work. Presently, however, the experimental data are lacking, and such choices are difficult to make. In this paper, hydrogen and deuterium depth profiling were studied using six different analysis beams—25 keV Bi+, Bi3+, Bi5+, 50 keV Bi32+, 10 keV C60+, and 20 keV C602+. The effort shows that cluster primary ions do enhance H? and D? yields, but the enhancement is only about 1.5–4.0 times when compared to atomic Bi+ ions. Because the currents of atomic ion analysis beams are much stronger than the currents of cluster ion analysis beams for most commercial ToF‐SIMS instruments, the atomic ion analysis beams can provide the strongest H? and D? signal intensities, and may be the best choices for hydrogen and deuterium depth profiling. In addition, two representative nuclides, 30Si and 18O, were also studied and yielded results similar to those of H? and D?. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The gas phase reactions of metal plasma with alcohol clusters were studied by time of flight mass spectrometry (TOFMS) using laser ablation-molecular beam (LAMB) method. The significant dependence of the product cluster ions on the molecular beam conditions was observed. When the plasma acted on the low density parts of the pulsed molecular beam, the metal-alcohol complexes M^+An (M=Cu, Al, Mg, Ni and A=C2H5OH, CH3OH) were the dominant products, and the sizes of product ion clusters were smaller. While the plasma acted on the high density part of the beam, however, the main products turned to be protonated alcohol clusters H^+An and, as the reactions of plasma with methanol were concerned, the protonated water-methanol complexes H3O^+(CH3OH)n with a larger size (n≤12 for ethanol and n≤24 for methanol). Similarly, as the pressure of the carrier helium gas was varied from 1 × 10^5 to 5 × 10^5 Pa, the main products were changed from M^+An to H^+An and the sizes of the clusters also increased. The changes in the product clusters were attributed to the different formation mechanism of the output ions, that is, the M^+An ions came from the reaction of metal ion with alcohol clusters, while H^+An mainly from collisional reaction of electron with alcohol clusters.  相似文献   

20.
The ability to incorporate functional metal ions (Mn+) into metal–organic coordination complexes adds remarkable flexibility in the synthesis of multifunctional organic–inorganic hybrid materials with tailorable electronic, optical, and magnetic properties. We report the cation-exchanged synthesis of a diverse range of hollow Mn+-phytate (PA) micropolyhedra via the use of hollow Co2+-PA polyhedral networks as templates at room temperature. The attributes of the incoming Mn+, namely Lewis acidity and ionic radius, control the exchange of the parent Co2+ ions and the degree of morphological deformation of the resulting hollow micropolyhedra. New functions can be obtained for both completely and partially exchanged products, as supported by the observation of Ln3+ (Ln3+=Tb3+, Eu3+, and Sm3+) luminescence from as-prepared hollow Ln3+-PA micropolyhedra after surface modification with dipicolinic acid as an antenna. Moreover, Fe3+- and Mn2+-PA polyhedral complexes were employed as magnetic contrast agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号