首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sterically demanding Fe‐ and Co‐based olefin polymerization catalysts 2‐Fe and 2‐Co bearing 2,6‐bis(biphenylmethyl)‐4‐methylaniline substituted bis(imino)pyridine ligands were synthesized and evaluated for ethylene polymerization. The late‐transition metal complexes were characterized by X‐ray diffraction, NMR spectroscopy, and HRMS, while their resultant polymers were characterized by size‐exclusion chromatography and 1H NMR spectroscopy. While catalyst 2‐Fe was inactive, catalyst 2‐Co was found to polymerize ethylene and avoid any detectable chain‐transfer to aluminum events that are known to plague other Fe‐ and Co‐based catalyst systems and to limit molecular weight. Furthermore, 2‐Co displays virtually perfect thermal stability up to 80 °C and shows greatly enhanced thermal stability at 90 °C as compared to previously reported analogues. These observations are attributed to the extreme steric demand imposed by the ligand which mitigates catalyst transfer, deactivation, and decomposition reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3990–3995  相似文献   

2.
A stereoselectivity switchable polymerization of isoprene has been developed, which is catalyzed by iminoimidazole‐Co(II) and ‐Fe(II) complexes. The influence of substituents ranging from electron donating to the electron withdrawing on the iminoimidazole‐Co(II) and ‐Fe(II) catalysts is investigated for isoprene polymerization. Two sets of iminoimidazole‐Co(II) and ‐Fe(II) complexes have been prepared and fully characterized. X‐ray crystallography analysis reveals that the complexes Co1 and Fe1 adopt distorted tetrahedral geometries. In the presence of AlEt2Cl as co‐catalyst, all the Co(II) complexes are active and the catalytic activity is highly dependent on the molar ratio of Al/Co. All the Co(II) complexes exhibit higher activities at low Al/Co ratio. Compared with the Co(II) complexes, the Fe(II) complexes are essentially inactive under the identical condition. However, on activation with combination of AlEtCl2 and [Ph3C][B(C6F5)4], both Co(II) and Fe(II) complexes display high activities with good conversions of isoprene (up to >99%). Additionally, low molecular weight and high trans‐1,4‐unit (>96%) selectivity are characteristics of the resultant polyisoprene. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 767–775  相似文献   

3.
 Bis(imino)pyridyl Fe(II) complexes are important catalysts in ethylene oligomerization for preparing α-olefins. The metal net charge-activity relationship of bis(imino)pyridyl Fe(II) complexes was investigated by molecular mechanics (MM) and net charge equilibration (QEq) method with modified Dreiding force field. It was found that metal net charge was in reverse ratio to ethylene oligomerization activity. Electron-donor substituents with less steric hindrance to the central metal were favorable to Fe complex activity. Metal net charge-activity relationship could be used to assist the design of new Fe oligomerization catalysts with higher activity.  相似文献   

4.
Summary: The polymerizations of ethyl vinyl ether, n‐butyl vinyl ether and isobutyl vinyl ether were investigated with a series of pyridine bis(imine) complexes of iron(II ) and cobalt(II ) in the presence of methylaluminoxane. The cobalt catalysts showed much higher activity and produced higher molecular weight polymers than their iron analogues. Both catalyst systems produced predominantly atactic polymers. There were no specific trends in the activity and the polymer molecular weight, according to the steric bulk around the metal center.

The iron(II ) and cobalt(II ) catalysts used here.  相似文献   


5.
 A series of new nickel(II) complexes with 2-aminomethylpyridine ligands, (2-PyCH2NHAr)2NiBr2(Ar = 2,6-dimethylphenyl 2a; 2,6-diisopropylphenyl 2b, 2,6-difluorophenyl 2c), have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane (MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers. Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in higher ratio of solid polymer to oligomer and higher molecular weight of the polymer. Catalyst 2c containing ortho-fluoro-substituents exhibited the highest catalytic activity, but only oligomers in which C12H24 had the maximum content were obtained by the catalyst. The molecular weight, molecular weight distribution, and microstructure of the resulted polymer were characterized by gel permeation chromatography and 13C-NMR spectrogram.  相似文献   

6.
后过渡金属配合物催化乙烯齐聚与聚合的研究进展   总被引:5,自引:0,他引:5  
后过渡金属配合物催化乙烯齐聚和聚合研究,不仅拓展了后过渡金属配合物的应用 ,而且为探求烯烃聚合催化剂提供了新机遇,成为当前催化研究中的热点课题.本文综述了后过渡金属铁、钴、镍配合物催化乙烯齐聚和聚合的国内外最新研究进展.  相似文献   

7.
Fe-Zn双金属氰化物催化环氧丙烷开环聚合的研究   总被引:5,自引:0,他引:5  
用Fe Zn双金属氰化物 (DMC)催化剂合成了数均分子量 30 0 0~ 12 0 0 0的聚氧化丙烯二元醇 .着重考察了聚合反应的温度、加料方式等对聚合物分子量及分布的影响 ,并初步探讨了Fe Zn双金属氰化物催化环氧丙烷开环聚合的反应特征 .实验发现 ,采用Fe ZnDMC催化剂 ,聚合物分子量可控 ;在较高温度下聚合所得的聚合物分子量分布呈双峰形 ,显示反应体系中至少存在两类活性中心 ,这可能与催化剂中存在两种价态的络合物有关 ,当降低聚合温度时 ,聚合物分子量分布呈单峰形 ,可能是一类活性中心没有引发 ;实验中还发现单体分批加料时聚合物分子量分布较窄 ,而一步加料法所得聚合物分子量分布则很宽  相似文献   

8.

A series of new complexes {2,6-bis[1-((2-methyl-4-methoxyphenyl)imino)ethyl]pyridine}Cl2 [M=Fe(II) (2), Co(II) (3), Ni(II) (4), Cu(II) (5), Zn(II) (6)] have been synthesized. At 25°C, using 500 equiv of methylaluminoxane (MAO), the activities of Fe(II), Co(II) catalysts can reach 4.02 ×106 g/mol-Fehatm for ethylene polymerization and 3.98×105 g/mol-Cohatm for ethylene oligomerization. The effects of polymerization conditions such as reaction temperature, Al/M molar ratio and time on the activity of catalyst have been explored.

  相似文献   

9.
A series of new complexes {2,6-bis[1-((2-methyl-4-methoxyphenyl)imino)ethyl]pyridine}Cl2 [M=Fe(II) (2), Co(II) (3), Ni(II) (4), Cu(II) (5), Zn(II) (6)] have been synthesized. At 25°C, using 500 equiv of methylaluminoxane (MAO), the activities of Fe(II), Co(II) catalysts can reach 4.02 ×106 g/mol-Fehatm for ethylene polymerization and 3.98×105 g/mol-Cohatm for ethylene oligomerization. The effects of polymerization conditions such as reaction temperature, Al/M molar ratio and time on the activity of catalyst have been explored.  相似文献   

10.
《中国化学》2017,35(8):1209-1221
Metal‐catalyzed ethylene homopolymerization and ethylene‐polar monomer copolymerization to produce new kinds of polyolefins with novel microstructures are of great interest. So far, there are some disadvantages for traditional transition metal catalyst systems. Therefore, it is critical to develop new catalysts or alternative strategies. In recent years, some cationic [P, O] palladium complexes have been demonstrated with the abilities to obtain oligomers and the high molecular weight polymers. Most importantly, these complexes showed high activity and generated polymers with specific microstructures when used for copolymerization of ethylene with industrially relevant polar monomers. This review summarizes several types of high performance cationic [P, O] palladium catalysts in ethylene oligomerization, ethylene homopolymerization and the copolymerization of ethylene with polar monomers. Specially, the regulation of steric and electronic effects at specific sites of the metal complexes was focused.  相似文献   

11.
The polymerization of methyl methacrylate (MMA) was investigated using a series of bis(β‐ketoamino)nickel(II) complexes in combination with methylaluminoxane in toluene solution. The binary catalyst is necessary for initiating MMA polymerization and producing PMMA with high molecular weights but broad molecular weight distributions. The effects of reaction temperature and Al:Ni molar ratios on the polymerization of MMA were examined in detail. Both steric bulk and electronic effects of the substituents around the imino group in the ligand on MMA polymerization activities could be observed. Relative to electronic effects, the steric hindrance of the ligands displayed a more significant effect on the catalytic activities, with the catalytic activity sequence observed in the order 4 > 1 > 2 > 3 > 5 > 6. Structural analyses of the polymers by 13C NMR spectra indicate that polymerization yields PMMA with a syndiotactic‐rich atactic microstructure. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
A series of tridentate NˆNˆN iron(II) and cobalt(II) complexes containing N-((pyridin-2-yl)methylene)-quinolin-8-amine derivatives were synthesized and characterized by elemental and spectroscopic analyses. The molecular structure of 1a was confirmed by X-ray diffraction analyses. On treatment with modified methylaluminoxane, these metal complexes exhibited good catalytic activities up to 2.8 × 106 g mol−1(Fe) h−1 for ethylene oligomerization, and butenes were the major products with nice selectivity for 1-C4. The steric and electronic effects on catalytic activities of metal complexes were carefully investigated as well as the influence of various reaction parameters. In the catalytic system, Fe(II) complexes performed better catalytic activities than their Co(II) analogues. With ligands having bulky substituents, the better catalytic activity was observed in catalytic system of Fe(II) complex, however, the lower catalytic activity was obtained in catalytic system of Co(II) complexes.  相似文献   

13.
A series of bis-ligated zinc complexes supported by Schiff base ligands were successfully synthesized and characterized by 1H,13C NMR,elemental analysis,and X-ray crystallography.These zinc complexes can be used as catalysts for the polymerization of rac-lactide in solution as well as in molten lactide.The results show that all catalysts exhibited high catalytic activity and obtained moderate heterotactic PLAs with the expected molecular weight.Complex 1 can catalyze the polymerization of rac-lactide under controllable conditions with living and immortal character in toluene solution.In addition,the steric hindrance and electronic effects has a great influence on the catalytic activity and selectivity of catalysts.  相似文献   

14.
As one of the most important catalysts in polyethylene industry,Phillips catalyst(CrOx/SiO2) was quite unique for its activation by ethylene monomer without using any activator like alkyl-aluminium or MAO.In this Work.the density functional theory (DFT) calculation combined with paired interacting orbitals(PIO) method was applied for the theoretical studies on coordination reaction mechanism between ethylene monomer and two model catalysts namely Cr(II)(OH)2(M1) and silsesquioxane-supported Cr(II)(M2) as surface Cr(II) active site precursors on Phillips catalyst at the early stage of ethylene polymerization.Unexpected multiplicity of the coordination states of ethylene monomer on both M1 and M2 model catalysts had been first reported on a molecular level.In general,increasing the coordination numbers of ethylene.the corresponding binding energy per ethylene for all the complexes was decreased.The supporting eflfect of chromium oxide onto silica gel surface was found to be destabilizing the corresponding complexes and decreasing the multiplicity of the coordination states as well due to both electronic and steric effect.Moreover.tri-and tetra-or higher ethylene coordination states could not be possibly formed on the supported catalyst as on the Cr(II)(OH)2.The optimized complex geometries were adopted for determining the intermolecular orbital interactions.In-phase overlap orbiral interaction for all the molecular complexes indicated favorable coordination between ethylene and Cr(II)sites.The molecular orbital origin of the π-bonded Cr(II),and mono-and di-C2H4 M1 complexes had been elucidated by PIO method showing high possibility of the formation of metallacyclopropane or metallacyclopentane active sites in the subsequent initiation of polymerization stage.  相似文献   

15.
2,6‐Bis(imino)pyridyl complexes of Fe and Co in combination with methylalumoxane form very active homogeneous catalytic systems for polymerization of ethylene. GPC analysis of the polymers prepared with the complexes indicates that the Co complexes produce single‐center catalysts whereas the Fe complexes produce catalysts with numerous types of active centers. Different centers in the latter catalyst systems respond differently to reaction conditions such as the reaction duration, the [MAO]:[Fe] ratio, the ethylene concentration, etc. The article examines the effects of reaction variables on the performance of both types of catalysts and proposes an explanation for the complex behavior of the catalysts derived from the Fe complexes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6159–6170, 2006  相似文献   

16.
Highly active catalysts for low pressure ethylene polymerization are formed when chromocene, bis (benzene)- or bis (cumene)-chromium or tris- or bis (allyl)-chromium compounds are deposited on high surface area silica-alumina or silica supports. Each catalyst type shows its own unique behavior in preparation, polymerization, activity, isomerization, and response to hydrogen as a chain transfer agent. The arene chromium compounds require an acidic support (silicaalumina) or thermal aging with silica to form a highly active catalyst. At 90°C polymerization temperature arene chromium catalysts produced high molecular weight polyethylene and showed, in contrast to supported chromocene catalysts, a much lower response to hydrogen as a chain transfer agent. An increase in polymerization temperature caused a significant decrease in polymer molecular weight. Addition of cyclopentadiene to supported bis (cumene)-chromium catalyst led to a new catalyst which showed a chain transfer response to hydrogen typical of a supported chromocene catalyst. Polymerization activity with tris- or bis (allyl)-chromium appears to depend on the divalent chromium content in the catalyst. Changes in the silica dehydration temperature of supported allyl chromium catalyst have a significant effect on the resulting polymer molecular weight. High molecular weight polymers were formed with catalysts that were prepared using silica dehydration temperatures below about 400°C. Dimers, trimers, and oligomers of ethylene were usually formed with catalysts that were prepared on silica dehydrated much above 400°C. The order of activity of the different types of catalysts was chromocene/silica > chromocene/silica-alumina > bis (arene)-chromium/silica-alumina ? allyl chromium/silica.  相似文献   

17.
The Late transition metal catalysts based on Ni(II) and Co(II) were synthesized and their structure and activity in polymerization of ethylene were compared. Methylaluminoxane (MAO) was used as a co-catalyst. To discover the optimum polymerization conditions, the effect of polymerization temperature, monomer pressure, [Al]: [Ni] molar ratio and time of polymerization were studied. Activity of the catalysts was promoted by increasing of the monomer pressure. The viscosity average molecular weights Mv of the synthesized polymers using 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide were increased with increasing of the monomer pressure from 1 up to 6 bar which studied. Explicitly, the ortho-substituent has a significant effect on the catalyst behavior. Melting point and crystallinity of the obtained polyethylene using 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide catalyst were increased with enhancing monomer pressure. The optimum and stable structures were computed and some factors related to the activity were studied. Catalyst 1,2-bis(2,4,6-trimethyl phenyl imino) acenaphthene Nickel(II) dibromide had the highest activity with the highest quantities of dipole moment (18.29 Debye), charge of Mullikan on metal atom (1.48) and Sum of electronic and thermal Energies (–7906.52 e.u.).  相似文献   

18.
This contribution reports ethylene and propylene polymerization behavior of a series of Ti complexes bearing a pair of phenoxy–imine chelate ligands. The bis(phenoxy–imine)Ti complexes in conjunction with methylalumoxane (MAO) can be active catalysts for the polymerization of ethylene. Unexpectedly, this C2 symmetric catalyst produces syndiotactic polypropylene. 13C NMR spectroscopy has revealed that the syndiotacticity arises from a chain-end control mechanism. Substitutions on the phenoxy–imine ligands have substantial effects on both ethylene and propylene polymerization behavior of the complexes. In particular, the steric bulk of the substituent ortho to the phenoxy–oxygen is fundamental to obtaining high activity and high molecular weight for ethylene polymerization and high syndioselectivity for the chain-end controlled propylene polymerization. The highest ethylene polymerization activity, 3240 kg/mol-cat h, exhibited by a complex having a t-butyl group ortho to the phenoxy–oxygen, represents one of the highest reported to date for Ti-based non-metallocene catalysts. Additionally, the polypropylene produced exhibits a Tm, 140 °C, and syndioselectivity, rrrr 83.7% (achieved by a complex bearing a trimethylsilyl group ortho to the phenoxy–oxygen) that are among the highest for polypropylenes produced via a chain-end control mechanism. Hence, the bis(phenoxy–imine)Ti complexes are rare examples of non-metallocene catalysts that are useful for the polymerization of not only ethylene but also propylene.  相似文献   

19.
For the rational design of metal catalyst in olefin polymerization catalysis, various strategies were applied to suppress the chain transfer by bulking up the axial positions of the metal center, among which the "sandwich" type turned out to be an efficient category in achieving high molecular weight polyolefin. In the α-diimine system, the "sandwich" type catalysts were built using the typical 8-aryl-naphthyl framework. In this contribution, by introducing the rotationally restrained benzosuberyl substituent into the ortho-position of N-aryl rings, a new class of "sandwich-like" α-diimine nickel catalysts was constructed and fully identified. The rotationally restrained benzosuberyl substituents played a "sandwich-like" function by capping the nickel center from two axial sites. Compared to the nickel catalyst Ni1 bearing freely rotated benzhydryl substituent, Ni2 featuring benzosuberyl substituent enabled the increase(8 times) of polymer molecular weights from 8 kDa to 65 kDa in the polymerization of ethylene. By further increasing the steric bulk of another ortho-site of the N-aryl ring, the polymer molecular weight even reached an ultrahigh level of 833 kDa(M_w=1857 kDa) using the optimized Ni3. Notably, these nickel catalysts could also mediate the copolymerization of ethylene with methyl 10-undecenoate, with Ni3 giving the highest copolymer molecular weight(88 kDa) and the highest incorporation of comonmer(2.0 mol%), along with high activity of up to 10~5 g·mol~(-1)·h~(-1).  相似文献   

20.
A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号