首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mitigating chain‐transfer and enhancing the thermal stability of co‐based olefin polymerization catalysts through sterically demanding ligands
Authors:Nolan E Mitchell  W Curtis Anderson Jr  Brian K Long
Institution:Department of Chemistry, University of Tennessee, Knoxville, Tennessee
Abstract:Sterically demanding Fe‐ and Co‐based olefin polymerization catalysts 2‐Fe and 2‐Co bearing 2,6‐bis(biphenylmethyl)‐4‐methylaniline substituted bis(imino)pyridine ligands were synthesized and evaluated for ethylene polymerization. The late‐transition metal complexes were characterized by X‐ray diffraction, NMR spectroscopy, and HRMS, while their resultant polymers were characterized by size‐exclusion chromatography and 1H NMR spectroscopy. While catalyst 2‐Fe was inactive, catalyst 2‐Co was found to polymerize ethylene and avoid any detectable chain‐transfer to aluminum events that are known to plague other Fe‐ and Co‐based catalyst systems and to limit molecular weight. Furthermore, 2‐Co displays virtually perfect thermal stability up to 80 °C and shows greatly enhanced thermal stability at 90 °C as compared to previously reported analogues. These observations are attributed to the extreme steric demand imposed by the ligand which mitigates catalyst transfer, deactivation, and decomposition reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3990–3995
Keywords:bis(imino)pyridine  catalysis  chain‐transfer  cobalt  polyethylene (PE)  thermal stability  transition metal chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号