首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A combined theoretical and experimental study of the vibrational absorption (VA)/IR, vibrational circular dichroism (VCD), Raman and Raman optical activity (ROA) spectra of l-histidine in aqueous solution has been undertaken to answer the questions (i) what are the species present and (ii) which conformers of the species are present under various experimental conditions. The VA spectra of l-histidine have been measured in aqueous solution and the spectral bands which can be used to identify both species (cation, zwitterion, anion) and conformer of the species have been identified and subsequently used to identify the species (zwitterion) and conformer (gauche minus minus, gauche minus plus for the side chain dihedral angles) present in solution at pH 7.6. The VCD spectral intensities have been used subsequently in combination with further theoretical studies to confirm the conclusions that have been arrived at by only analyzing the VA/IR spectra. Finally a comparison of measured Raman and ROA spectra of l-histidine with Raman and ROA spectral simulations for the conformers and species derived from the combined VA/IR and VCD experimental and theoretical work is presented as a validation of the conclusions arrived at from VA/IR and VCD spectroscopy. The combination of VA/IR and VCD with Raman and ROA is clearly superior and both sets of experiments should be performed.  相似文献   

2.
In this work we present the experimental vibrational absorption (VA), vibrational circular dichroism (VCD) and Raman spectra for (+)-trans-1(S),2(S)-dicyanocyclopropane and its dideuterio derivative, trans-1(S),2(S)-dicyano-1(S),2(S)-dideuteriocyclopropane, along with VA, VCD, Raman and Raman optical activity (ROA) spectral simulations. Here we investigate the applicability of various local and non-local exchange-correlation (XC) functionals, hybrids and meta-hybrids to reproduce the vibrational spectra of this strained ring system, which also bears two cyano groups. At the highest level of theory, B3PW91/ aug-cc-pVTZ, we also investigated the trans-, cis- and gem-dicyanocyclopropane (trans-, cis-, and gem-DCCP), cyanocyclopropane (CCP) and the parent molecule cyclopropane (CP). In doing so we have investigated the electronic effects (coupling) between the cyano groups and the cyclopropane ring. In addition to providing an interpretation of the experimentally observed vibrational spectra for these molecules, this work also provides benchmark calculations for other methods, especially semi-empirical based wave function and density functional theory (DFT) based methods, such as SCC-DFTB and PM6. For the semi-empirical DFT based methods to be used for 3-membered ring systems, one ought to document their reliability for systems which were not used in the parameterization. The small 3- and 4-membered ring systems are good test systems because they contain non-standard bonding, which may be difficult to determine accurately with the approximations used in the SCC-DFTB and other semi-empirical methods. Like molecular mechanics force fields, semi-empirical methods, based on DFT and wave function quantum mechanics (WFQM), must be benchmarked against high level ab initio and DFT calculations and experimental data. In addition to bonding, the changes in the electric dipole moment, magnetic dipole moment, electric dipole-electric dipole polarizability, electric dipole-magnetic dipole polarizability and electric dipole-electric quadrupole polarizability with respect to nuclear displacement and nuclear velocity can be determined by the VA, VCD, Raman and ROA intensities. Hence it is important that the semi-empirical based DFT and wave function methods not only be parameterized to determine energies, gradients and Hessians, but also the electric and magnetic moments and their derivatives that determine the electronic and magnetic properties of these molecules and their interactions with matter and radiation. This will allow biochemists, biophysicists, molecular biologists, and physical biologists to use experimental and theoretical VA, VCD, Raman and ROA spectroscopies to probe biophysical and biochemical function and processes at the molecular level. Festschrift in Honor of Philip J. Stephens’ 65th Birthday.  相似文献   

3.
In this work we have utilized recent density functional theory Born-Oppenheimer molecular dynamics simulations to determine the first principles locations of the water molecules in the first solvation shell which are responsible for stabilizing the zwitterionic structure of L-alanine. Previous works have used chemical intuition or classical molecular dynamics simulations to position the water molecules. In addition, a complete shell of water molecules was not previously used, only the water molecules which were thought to be strongly interacting (H-bonded) with the zwitterionic species. In a previous work by Tajkhorshid et al. (J Phys Chem B 102:5899) the L-alanine zwitterion was stabilized by 4 water molecules, and a subsequent work by Frimand et al. (Chem Phys 255:165) the number was increased to 9 water molecules. Here we found that 20 water molecules are necessary to fully encapsulate the zwitterionic species when the molecule is embedded within a droplet of water, while 11 water molecules are necessary to encapsulate the polar region with the methyl group exposed to the surface, where it migrates during the MD simulation. Here we present our vibrational absorption, vibrational circular dichroism and Raman and Raman optical activity simulations, which we compare to the previous simulations and experimental results. In addition, we report new VA, VCD, Raman and ROA measurements for L-alanine in aqueous solution with the latest commercially available FTIR VA/VCD instrument (Biotools, Jupiter, FL, USA) and Raman/ROA instrument (Biotools). The signal to noise of the spectra of L-alanine measured with these new instruments is significantly better than the previously reported spectra. Finally we reinvestigate the causes for the stability of the Pπ structure of the alanine dipeptide, also called N-acetyl-L-alanine N′-methylamide, in aqueous solution. Previously we utilized the B3LYP/6-31G* + Onsager continuum level of theory to investigate the stability of the NALANMA4WC Han et al. (J Phys Chem B 102:2587) Here we use the B3PW91 and B3LYP hybrid exchange correlation functionals, the aug-cc-pVDZ basis set and the PCM and CPCM (COSMO) continuum solvent models, in addition to the Onsager and no continuum solvent model. Here by the comparison of the VA, VCD, Raman and ROA spectra we can confirm the stability of the NALANMA4WC due to the strong hydrogen bonding between the four water molecules and the peptide polar groups. Hence we advocate the use of explicit water molecules and continuum solvent treatment for all future spectral simulations of amino acids, peptides and proteins in aqueous solution, as even the structure (conformer) present cannot always be found without this level of theory. Festschift in Honor of Philip J. Stephens’ 65th Birthday. During the proof stage of this article a very relevant article has been published by M. Losada and Y. Xu titled “Chirality transfer through hydrogen-bonding: Experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water” in Phys Chem Chem Phys 2007, 9: 3127–3135. In that work they confirm that the effects of water are seen in the VCD spectra and hence it is fundamental to include explicit water molecules in modeling studies of the vibrational spectra of biomolecules in aqueous solution.  相似文献   

4.
The infrared vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of methyl lactate were measured in the 1000-1800 cm(-1) region in the CCl(4) and H(2)O solvents, respectively. In particular, the chirality transfer effect, i.e. the H-O-H bending bands of the achiral water subunits that are hydrogen-bonded to the methyl lactate molecule exhibit substantial VCD strength, was detected experimentally. A series of density functional theory calculations using B3PW91 and B3LYP functionals with 6-311++G(d,p) and aug-cc-pVTZ basis sets were carried out to simulate the VA and VCD spectra of the methyl lactate monomer and the methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3. The population weighted VA and VCD spectra of the methyl lactate monomer are in good agreement with the experimental spectra in CCl(4). Implicit polarizable continuum model was found to be inadequate to account for the hydrogen-bonding effect in the observed VA and VCD spectra in H(2)O. The methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3 were used to model the explicit hydrogen-bonding. The population weighted VA and VCD spectra of the methyl lactate-H(2)O binary complex are shown to capture the main spectral features in the observed spectra in aqueous solution. The theoretical modeling shows that the extent of chirality transfer depends sensitively on the specific binding sites taken by the achiral water molecules. The observation of chirality transfer effect opens a new spectral window to detect and to model the hydrogen-bonding solvent effect on VCD spectra of chiral molecules.  相似文献   

5.
The geometry and the electronic structure of chiral lanthanide(III) complexes are traditionally probed by electronic methods, such as circularly polarised luminescence (CPL) and electronic circular dichroism (ECD) spectroscopy. The vibrational phenomena are much weaker. In the present study, however, significant enhancements of vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectral intensities were observed during the formation of a chiral bipyridine–EuIII complex. The ten‐fold enhancement of the vibrational absorption and VCD intensities was explained by a charge‐transfer process and the dominant effect of the nitrate ion on the spectra. A much larger enhancement of the ROA and Raman intensities and a hundred‐fold increase of the circular intensity difference (CID) ratio were explained by the resonance of the λ=532 nm laser light with the 7F05D0 transitions. This phenomenon is combined with a chirality transfer, and mixing of the Raman and luminescence effects involving low‐energy 7F states of europium. The results thus indicate that the vibrational optical activity (VOA) may be a very sensitive tool for chirality detection and probing of the electronic structure of EuIII and other coordination compounds.  相似文献   

6.
The tryptophan (Trp) aromatic residue in chiral matrices often exhibits a large optical activity and thus provides valuable structural information. However, it can also obscure spectral contributions from other peptide parts. To better understand the induced chirality, electronic circular dichroism (ECD), vibrational circular dichroism (VCD), and Raman optical activity (ROA) spectra of Trp‐containing cyclic dipeptides c‐(Trp‐X) (where X=Gly, Ala, Trp, Leu, nLeu, and Pro) are analyzed on the basis of experimental spectra and density functional theory (DFT) computations. The results provide valuable insight into the molecular conformational and spectroscopic behavior of Trp. Whereas the ECD is dominated by Trp π–π* transitions, VCD is dominated by the amide modes, well separated from minor Trp contributions. The ROA signal is the most complex. However, an ROA marker band at 1554 cm?1 indicates the local χ2 angle value in this residue, in accordance with previous theoretical predictions. The spectra and computations also indicate that the peptide ring is nonplanar, with a shallow potential so that the nonplanarity is primarily induced by the side chains. Dispersion‐corrected DFT calculations provide better results than plain DFT, but comparison with experiment suggests that they overestimate the stability of the folded conformers. Molecular dynamics simulations and NMR results also confirm a limited accuracy of the dispersion‐DFT model in nonaqueous solvents. Combination of chiral spectroscopies with theoretical analysis thus significantly enhances the information that can be obtained from the induced chirality of the Trp aromatic residue.  相似文献   

7.
8.
Chiroptical techniques are increasingly employed for assigning the absolute configuration of chiral molecules through comparison of experimental spectra with theoretical predictions. For assignment of natural products, electronic chiroptical spectroscopies such as electronic circular dichroism (ECD) are routinely applied. However, the sensitivity of electronic spectral parameters to experimental conditions and the theoretical methods employed can lead to incorrect assignments. Vibrational chiroptical methods (vibrational circular dichroism, VCD, and Raman optical activity, ROA) provide more reliable assignments, although they, in particular ROA, have been little explored for assignments of natural products. In this study, the ECD, VCD, and ROA chiroptical spectroscopies are evaluated for the assignment of the absolute configuration of a highly flexible natural compound with two stereocenters and an asymmetrically substituted double bond, the marine antibiotic Synoxazolidinone A (SynOxA), recently isolated from the sub-Arctic ascidian Synoicum pulmonaria. Conformationally averaged nuclear magnetic resonance (NMR), ECD, Raman, ROA, infrared (IR) and VCD spectral parameters are computed for the eight possible stereoisomers of SynOxA and compared to experimental results. In contrast to previously reported results, the stereochemical assignment of SynOxA based on ECD spectral bands is found to be unreliable. On the other hand, ROA spectra allow for a reliable determination of the configuration at the double bond and the ring stereocenter. However, ROA is not able to resolve the chlorine-substituted stereogenic center on the guanidinium side chain of SynOxA. Application of the third chiroptical method, VCD, indicates unique spectral features for all eight SynOxA isomers in the theoretical spectra. Although the experimental VCD is weak and restricted by the limited amount of sample, it allows for a tentative assignment of the elusive chlorine-substituted stereocenter. VCD chiroptical analysis of a SynOxA derivative with three stereocenters, SynOxC, results in the same absolute configuration as for SynOxA. Despite the experimental challenges, the results convincingly prove that the assignment of absolute configuration based on vibrational chiroptical methods is more reliable than for ECD.  相似文献   

9.
Vibrational circular dichroism (VCD) spectroscopy has a unique specificity to chirality and is highly sensitive to the conformational equilibria of chiral molecules. On the other hand, the matrix‐isolation (MI) technique allows substantial control over sample compositions, such as the sample(s)/matrix ratio and the ratio among different samples, and yields spectra with very narrow bandwidths. We combined VCD spectroscopy with the MI technique to record MI‐VCD and MI‐vibrational absorption spectra of 3‐butyn‐2‐ol at different MI temperatures, which allowed us to investigate the conformational distributions of its monomeric and binary species. Good mirror‐imaged MI‐VCD spectra of opposite enantiomers were achieved. The related conformational searches were performed for the monomer and the binary aggregate and their vibrational absorption and VCD spectra were simulated. The well‐resolved experimental MI‐VCD bands provide the essential mean to assign the associated vibrational absorption spectral features correctly to a particular conformation in case of closely spaced bands. By varying the matrix temperature, we show that one can follow the self‐aggregation process of 3‐butyn‐2‐ol and confidently correlate the MI‐VCD spectral features with those obtained for a 0.1 M CCl4 solution and as a neat liquid at room temperature. Comparison of the aforementioned experimental VCD spectra shows conclusively that there is a substantial contribution from the 3‐butyn‐2‐ol aggregate even at 0.1 M concentration. This spectroscopic combination will be powerful for studying self‐aggregation of chiral molecules, and chirality transfer from a chiral molecule to an interacting achiral molecule and in electron donor–acceptor chiral complexes.  相似文献   

10.
We present the determination of the conformational properties of aeroplysinin-1 in aqueous solution by means of a combined experimental and theoretical Raman optical activity (ROA) and vibrational circular dichroism (VCD) study. Aeroplysinin-1 is an antiangiogenic drug extracted from the sponge Aplysina cavernicola which has been proved to be a valuable candidate for the treatment of cancer and other antiangiogenic diseases. Our study shows that this molecule possesses the 1S,6R absolute configuration in aqueous solution, where only two conformers are present to a significant level. We discuss in detail the relationships between the chiro-optical ROA and VCD features, and the structural properties of various energy accessible conformers are described. The present work is one of the first studies in which both ROA and VCD have been used as complementary tools for the determination of absolute configuration and dominant solution-state conformations of an unknown therapeutically significant molecule.  相似文献   

11.
Novel vibrational circular dichroism (VCD) studies in the CH region of a series of methyl glycosidic carbohydrates were examined. The specific CH stretching VCD band predicts absolute stereochemistries of their anomeric positions. The C-1 chiral information was extracted to the methoxy substituent as a probe. The concept of the vibrational chirality probe from a single chiral center in the presence of numerous such centers might be useful in determining the absolute configuration, when a multiplicity of chiral centers is present in a molecule such as a carbohydrate.  相似文献   

12.
We examine calculated vibrational Raman optical activity (ROA) spectra of octahedral cobalt complexes containing different combinations of acetylacetonato and 3‐acetylcamphorato ligands. Starting from the Δ‐tris(acetylacetonato)cobalt(III) complex, the ROA spectra of isomers generated by successive replacement of acetylacetonato ligands by chiral (+)‐ or (?)‐3‐acetylcamphorato ligands are investigated. In this way, it is possible to assess the influence of the degree of ligand substitution, ligand chirality, and geometrical isomerism on the ROA spectra. In addition, the effect of the Λ‐configuration is studied. It is found that the ROA spectra contain features that make it possible to identify each of the isomers, demonstrating the great sensitivity of ROA spectroscopy to the chiral nature of the various complexes.  相似文献   

13.
BINAP (2,2'-diphenylphosphino-1,1'-binaphthyl) is a unique binaphthyl diphosphine ligand with axial chirality. The palladium complexes of BINAP and of its derivative TOLBINAP have found extensive applications in the field of asymmetric syntheses. The conformational changes in the BINAP and TOLBINAP ligands before and after coordination with palladium have been investigated using density functional theory, vibrational absorbance (VA) and vibrational circular dichroism (VCD) spectroscopy. VA and VCD spectra of these two chiral ligands and their corresponding palladium complexes have been recorded in CDCl(3) solution. Extensive conformational searches have been carried out for both the ligands and the associated palladium complexes. Coordination with palladium has been found to introduce structural rigidity to the ligands. The calculated VA and VCD spectra of the ligands and complexes in the gas phase show substantial differences to the experimental data. Incorporation of the implicit polarisable continuum solvation model has provided much better agreement between theory and experiment, especially for the complexes, allowing clear identification of the species and conformations. This and the high specificity of VCD spectral signatures to chirality and to conformations suggest the potential applications of VCD spectroscopy for following these important catalytic species in solution reactions directly.  相似文献   

14.
The infrared vibrational absorption (VA) and vibrational circular dichroism (VCD) spectral features of L-(+)-lactic acid (LA) in CDCl3 solution are concentration dependent, showing evidence of oligomerization with increasing concentrations. To understand the observed spectra, geometry optimizations, vibrational frequencies, and VA and VCD intensities were evaluated for (LA)n with n=1-4 using density functional theory calculations at the B3LYP6-311++G(d,p), B3LYP/cc-pVTZ, and in some cases, B3LYP/aug-cc-pVTZ levels of theory. Comparisons with the experimental spectra indicate that the lowest energy LA dimer (AA), formed by two C Double Bond O...HO hydrogen bonds, is one of the dominating species in solution at room temperature. Possible contributions from the LA trimer and tetramer are also discussed. To model the VA and VCD spectra of LA in water and in methanol, both implicit polarizable continuum model and explicit hydrogen bonding considerations were used. For explicit hydrogen bonding, geometry optimizations of the AA-(water)n and AA-(methanol)n complexes, with n=2,4,6, were performed, and the corresponding VA and VCD spectra were simulated. Comparisons of the calculated and experimental VA and VCD spectra in the range of 1000-1800 cm(-1) show that AA-(water)n with n=6 best reproduces the experimental spectra in water. On the other hand, AA-(methanol)n with n=2 reproduces well the experimental results taken in methanol solution. In addition, we found evidence of chirality transfer, i.e., some vibrational bands of the achiral water subunits gain VCD strength upon complexation with the chiral LA solute. The study is the first to use VCD spectroscopy to probe the structures of LA aggregates and hydrogen bonding solvation clusters in the solution phase.  相似文献   

15.
This paper presents a discussion of the interaction energies, conformations, vibrational absorption (VA, harmonic and anharmonic) and vibrational circular dichroism (VCD) spectra for conformers of monomeric chiral d(-)-lactic acid and their complexes with water at the DFT(B3LYP)/aug-cc-pVDZ and DFT(B3LYP)/aug-cc-pVTZ levels. A detailed analysis has been performed principally for the two most stable complexes with water, differing by lactic acid conformation. The VCD spectra were found to be sensitive to conformational changes of both free and complexed molecules, and to be especially useful for discriminating between different chiral forms of intermolecular hydrogen bonding complexes. In particular, we show that the VCD modes of an achiral water molecule after complex formation acquire significant rotational strengths whose signs change in line with the geometry of the complex. Using the theoretical prediction, we demonstrate that the VCD technique can be used as a powerful tool for structural investigation of intermolecular interactions of chiral molecules and can yield information complementary to data obtained through other molecular spectroscopy methods.  相似文献   

16.
Vibrational circular dichroism (VCD) spectroscopic measurements and density functional theory (DFT) calculations have been used to obtain the absolute structural information about four sets of diastereomers of pentacoordinate spirophosphoranes derived separately from l‐ (or d‐ ) valine and l‐ (or d‐ ) leucine for the first time. Each compound contains three stereogenic centers: one at the phosphorus center and two at the amino acid ligands. Extensive conformational searches for the compounds have been carried out and their vibrational absorption (VA) and VCD spectra have been simulated at the B3LYP/6‐311++G** level. Although both VA and VCD spectra are highly sensitive to the structural variation of the apical axis, that is, the O? P? O or N? P? O arrangement, the rotamers generated by the aliphatic amino side chains show little effect on both. The dominant experimental VCD features in the 1100–1500 cm?1 region were found to be controlled by the chirality at the phosphorus center, whereas those at the C?O stretching region are determined by the chirality of the amino acid ligands. The good agreement between the experimental VA and VCD spectra in CDCl3 solution and the simulated ones allows us to assign the absolute configurations of these pentacoordinate phosphorus compounds with high confidence. This study shows that the VCD spectroscopy complemented with DFT calculations is a powerful and reliable method for determining the absolute configurations and dominating conformers of synthetic phosphorus coordination complexes in solution.  相似文献   

17.
The Absolute configuration (AC) of the chiral alkane D3-anti-trans-anti-trans-anti-trans-perhydrotriphenylene (PHTP), 1, is determined by comparison of density functional theory (DFT) calculations of its vibrational circular dichroism (VCD) and optical rotation (OR) to the experimental VCD and OR of (+)−1, obtained in high enantiomeric excess using chiral gas chromatography. Conformational analysis of 1 demonstrates that the all-chair (CCCC) conformation is the lowest in energy and that other conformations are too high in energy to be significantly populated at room temperature. The B3PW91/TZ2P calculated IR spectrum of the CCCC conformation of 1 is in excellent agreement with the experimental IR spectrum, confirming the conformational analysis and demonstrating the excellent accuracy of the B3PW91 functional and the TZ2P basis set. The B3PW91/TZ2P calculated VCD spectrum of the CCCC conformation of S-1 is in excellent agreement with the experimental VCD spectrum of (+)−1, unambiguously defining the AC of 1 to be S(+)/R(−). The B3LYP/aug-cc-pVDZ calculated OR of S-1 over the range 589–365 nm has the same sign and dispersion as the experimental OR of (+)−1, further supporting the AC S(+)/R(−). Our results confirm the AC proposed earlier by Farina and Audisio. This study provides a further demonstration of the excellent accuracy of VCD spectra predicted using Stephens’ equation for vibrational rotational strengths together with the ab initio DFT methodology, and further documents the utility of VCD spectroscopy in determining the ACs of chiral molecules.  相似文献   

18.
R-(−)-camphorquinone is a bicyclical terpenoid with many usages and application in different fields. Different experimental and theoretical works reveal that there is only one stable conformer of this chiral chemical species in agreement to the sterical restriction that the bicycle introduces. In the current work, from a complete assignment of the vibrational IR and Raman spectra, we are able to explain the VCD spectrum of the title compound. The recorded spectra of R-(−)-camphorquinone in different phases have been analyzed and compared: the first one in CCl4 solution, the second one using Nujol and Fluorolube suspensions and the third one using thin films. Finally, to study the coupling between the two C=O stretching normal modes, a NBO analysis is performed. The present work reveals that IR, Raman and VCD, combined with quantum chemical calculations, are helpful complementary techniques to characterize chiral systems, as terpenes, in different phases.  相似文献   

19.
We present a combined experimental and computational investigation of the vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of [1,1'-binaphthalene]-2,2'-diol. First, the sensitive dependence of the experimental VA and VCD spectra on the solvent is demonstrated by comparing the experimental spectra measured in CH(2)Cl(2), CD(3)CN, and DMSO-d(6) solvents. Then, by comparing calculations performed for the isolated solute molecule to calculations performed for molecular complexes formed between solute and solvent molecules, we identify three main types of perturbations that affect the shape of the VA and VCD spectra when going from one solvent to another. These sources of perturbations are (1) perturbation of the Boltzmann populations, (2) perturbation of the electronic structure, and (3) perturbation of the normal modes.  相似文献   

20.
The stable conformations of a series of bioactive molecules, (?)-alboatisins A?C, are identified via Monte Carlo searching with the MMFF94 molecular mechanics force field. Then, the optical rotation (OR) values, vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) spectra were calculated using the gradient-corrected density functional theory method. The vibrational and transition modes of molecular chirality were explored in terms of their microscopic origin. The calculated specific rotations are in agreement with the experimental values. From the OR analysis, it was concluded that optical rotation values areregulated by hydroxyl substitution. Vibrations occurring on the chiral skeleton may cause strong absorption in VCD spectra; VCD spectra are thus the spectral response to deformation vibrations on the chiral carbon skeleton. The lowest-energy negative Cotton effect is caused by σ→π* transition. Frontier molecular orbital analysis showed that strong ECD absorptions are produced when the dominant transition on the chiral skeleton is asymmetric; ECD spectra show the result of transitions lacking asymmetry on the chiral skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号