首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Four new supramolecular compounds, (2-mimH)[Ca(pydcH)3][Ca(pydcH2)(pydc)(H2O)2]·4H2O (1), (1-mimH)2[Zr(pydc)3] (2), (2-mimH)2[Cd(pydc)2]·8H2O (3), and (2-mimH)2[Hg(pydc)2]·8H2O (4) [where pydcH2 = pyridine-2,6-dicarboxylic acid (dipicolinic acid), 1-mim = 1-methylimidazole, and 2-mim = 2-methylimidazole], have been synthesized and characterized by elemental analyses, spectroscopic techniques (IR, UV–vis, 1H NMR, and 13C NMR), thermal (TG/DTG/DTA) analysis as well as single-crystal X-ray diffraction. All four compounds are proton-transfer salts of the methylimidazolium cations and metal complex anions that crystallized from a solution of pyridine-2,6-dicarboxylic acid, methylimidazole, metal nitrates or chlorides as starting materials. The coordinating dicarboxylic acid is deprotonated at the carboxyl group and methylimidazole is protonated to balance the charge. In the crystal structures of 14, hydrogen bonding and ππ stacking play important roles. Water clusters are formed in 1, 3, and 4. The equilibrium constants of dipicolinic acid (pydc) and methylimidazole derivatives (1-mim and 2-mim), pydc-2-mim, pydc-1-mim proton-transfer systems as well as those of their complexes were investigated by a potentiometric pH titration method. The stoichiometries of most of the complex species in solution were very similar to the cited crystalline metal ion complexes.  相似文献   

2.
Three new complexes of group thirteen metals, gallium(III), indium(III), and thallium(III) with proton transfer compounds, obtained from 2,6‐pyridinedicarboxylic acid (dipicolinic acid), were synthesized and characterized using elemental analysis, IR, 1H and 13C NMR spectroscopy and single crystal X‐ray diffraction. The gallium(III) and indium(III) complexes were prepared using (pydaH2)(pydc) (pyda = 2,6‐pyridinediamine, pydcH2 = dipicolinic acid) and thallium(III) complex was obtained from (creatH)(pydcH) (creat = creatinine). The chemical formulae and space groups of the complexes are (pydaH)[Ga(pydc)2] · 3.25H2O · CH3OH, ( 1 ), [In(pydc)(pydcH)(H2O)2] · 5H2O, Pna21 ( 2 ) and [Tl2(pydcH)3(pydc)(H2O)2], ( 3 ). Non‐covalent interactions such as ion‐pairing, hydrogen bonding and π‐π stacking are discussed. The complexation reactions of pyda, pydc, and pyda + pydc with In3+ and Ga3+ ions in aqueous solution were investigated by potentiometric pH titrations, and the equilibrium constants for all major complexes formed are described.  相似文献   

3.
Two metal–organic coordination polymers based on a salt, (pydcH)3·(pipzH2)1.5·(H2O)3.7, between pyridine-2,6-dicarboxylic acid, pydcH2, and piperazine, pipz, formulated as (pipzH2)[Sr(pydc)2(H2O)2]n·4H2O and [Ce(pydc)2(H2O)2]n·4H2O were prepared. The synthesis, IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, supramolecular synthons, and potentiometric measurements were investigated. The chemical environment around each Sr(II) or Ce(IV) was a distorted tricapped trigonal prism. The butterfly- and ladder-like structures of these complexes were bridged by oxygens of (pydc)2– and M–O(pydc)–M bonds. In the crystal structure, intermolecular O–H?O, N–H?O, and C–H?O hydrogen bonds result in the formation of supramolecular structures. The stoichiometry and stability of the pydc–pipz system with Sr(II) in aqueous solution were investigated by potentiometric titration. The stoichiometry of complex species in solution was found to be similar to the cited crystalline metal ion complexes.  相似文献   

4.
[Cu(pydc)(im)]n (1), [Cu(pydc)(mim)3]?2H2O (2), [Cu(pydc)(ampy)(H2O)]?H2O (3), and [Cu(pydc)(phen)][Cu(Hpydc)2] (4) (H2pydc = 2,6-pyridinedicarboxylic acid or dipicolinic acid, im = imidazole, mim = 2-methylimidazole, ampy = 2-amino-4-methylpyridine, and phen = 1,10-phenanthroline) were synthesized and characterized by elemental analysis, spectroscopic measurements (UV–vis and IR spectra) and single crystal X-ray diffraction. Complexes 1, 2 and 3 were studied by thermogravimetric analysis from ambient temperature to 1100 K under nitrogen and thermal stabilities were investigated. The effects of complexes on proliferation of fibrosarcoma cells were investigated using the Quick Cell Proliferation Assay. The cell viability changes depend on the concentrations and type of complexes. According to cell proliferation/viability data, 4 was determined to be the most cytotoxic.  相似文献   

5.
《Journal of Coordination Chemistry》2012,65(16-18):2714-2721
Abstract

A series of heterometallic metal-organic frameworks (MOFs) employing pyridine-2,6-dicarboxylate and 1,10-phenanthroline as ligands have been synthesized hydrothermally. In isostructural compounds 13 [Ln(pydc)3Cu2(phen)4]·I·× H2O (Ln?=?La (1), Nd (2), Dy (3); x?=?6, 5, 5), the metalloligand [Ln(pydc)3] assembles with [Cu(phen)2] units to construct a dodecanuclear cluster via Cu–O bonds and π–π interactions. The clusters are further stacked into three-dimensional supramolecular frameworks with nano-sized cavities. In [La(Hpydc)(pydc)2Zn(phen)3]·3H2O (4), the metalloligand [Ln(Hpydc)(pydc)2] assembles with [Zn(phen)3] units to construct a tetranuclear cluster via electrostatic interaction and π–π interaction. This work reveals that the changes of lanthanide metalloligands and the coordination pattern of 3d transition centers would result in significant variation in the final structures. The thermal, optical, and electrochemical properties have been well investigated.  相似文献   

6.
The 1:1 proton transfer compound LH2, (creatH)+ (pydcH)?, has been prepared from the reaction of creatinine, creat, and dipicolinic acid, pydcH2, (2, 6‐ pyridinedicarboxylic acid) and characterized using IR, 1H and 13C NMR spectroscopy. The first coordination complex (creatH)[Zn(pydc)(pydcH)]·4H2O, was prepared using LH2 and zinc(II) nitrate, and characterized using IR, 1H and 13C NMR spectroscopy and single crystal X‐ray crystallography. The crystal system is triclinic with space group with two molecules per unit cell. The unit cell dimensions are a = 8.085(2) Å, b = 10.802(4) Å, c = 13.632(4) Å, α = 104.98(2)°, β = 90.31(2)° and γ = 92.55(3)°. The structure has been refined to a final value for the crystallographic R factor of 0.0381 based on 3003 reflections. The zinc atom is six‐coordinated with a distorted octahedral geometry. The (pydc)2? and (pydcH)? units are almost perpendicular to each other. Extensive hydrogen bondings between carboxylate groups, (creatH)+ and water molecules throughout the zinc(II) complex as well as π–π stacking and ion pairing play important roles in stabilizing the corresponding lattices. The protonation constants of the building blocks of the pydcH2‐creat adduct, the equilibrium constants for the reaction of (pydc)2? with creat and the stoichiometry and stability of the ZnII complex with LH2 in aqueous solution were accomplished by potentiometric pH titration. The solution studies support a self‐associated (creatH)+(pydcH)? as the most abundant species at pH = 3.4. The stoichiometry of the crystalline complex (i.e. (creatH) [Zn(pydc)(pydcH)])and that of the most abundant species detected in solution were found the same.  相似文献   

7.
Two pyridine-2,5-dicarboxylic acid (pydcH2) complexes of nickel(II) with 2,2′-bipyridine and 1,10-phenanthroline were synthesized and characterized by elemental, spectroscopic, thermal analysis, magnetic measurements and single crystal X-ray diffraction techniques. Both [Ni(pydc)(bipy)2]·7H2O and [Ni(pydc)(phen)2]·6.5H2O crystallize in the monoclinic system and P21/c space group. The Ni(II) ions are coordinated by two bidentate bipy or phen ligands and one pydc dianion in a distorted octahedral geometry. The pydc ligand is coordinated through the pyridine nitrogen atom and oxygen atom of carboxyl group as a bidentate ligand. Both carboxylate groups of pydc are deprotonated but only the 2-carboxylate is coordinated to the metal. Thermal decompositions of the complexes have been studied over the range 30–600 °C on heating in a static air atmosphere.  相似文献   

8.
The novel title compounds, (pipzH2)1.5(pydcH)3·3.7H2O, 1, (pipzH2)[Zr(pydc)3]·8H2O, 2 and (pipzH2)[Ce(pydc)3]·8H2O, 3 in which pydcH2 is pyridine-2,6-dicarboxylic acid and pipz is piperazine were obtained in aqueous solution. The compounds were characterized by IR, 1H NMR and 13C NMR spectroscopy, elemental analyses, and X-ray crystallography. Compound 1 is resulted from proton transfer between pydcH2 and pipz. However, compounds 2 and 3 are resulted from complexation of 1 and corresponding metallic salts. Both compounds 2 and 3 contain three pyridine-2,6-dicarboxylate species as tridentate ligands, one piperazinediium as counter ion, and eight-uncoordinated water molecules in the asymmetric unit. In both structures each M(IV) is coordinated in a distorted tricapped trigonal prism geometry by three nitrogen and six oxygen atoms of carboxylate groups of three (pydc)2− fragments. In the crystal structures of 1, 2 and 3, extensive O–H···O, N–H···O and C–H···O hydrogen bonds as well as electrostatic forces, C–H···π, C–O···π and π–π stacking play important roles in stabilizing structures. The geometrical parameters of the [M(pydc)3]2− anionic complexes, where M = Ce(IV), Zr(IV) have been optimized with the B3LYP method of density functional theory (DFT) and ab initio Hartree–Fock (HF) methods for comparison. In addition, we have studied the structures of (pydc)2− anion and its mono and doubly protonated forms, (pydcH) and pydcH2. The electronic properties of the anionic complexes and ligands have been investigated based on the natural bond orbital (NBO) analysis at the B3LYP method which verifies that the synergistic effect has been occurred in the title complexes. In solution study of 2, the stoichiometry and stability constant of complexation of pipz, pydc, pydc–pipz proton transfer system and Zr(IV) ion in aqueous solution were investigated by potentiometric method.  相似文献   

9.
The reaction of solution 2,6‐pyridinedicarboxylic acid and 1,10‐phenanthroline ( 1 ) with CrCl3·6H2O led to the complex [Cr(phen)(pydc)(H2O)][Cr(pydc)2]·4H2O ( 2 ) (phen is 1,10‐phenanthroline and pydcH2 is 2,6‐pyridinedicarboxylic acid). 2 was characterized by elemental analysis, IR spectroscopy and single‐crystal structure determination. Crystal data for 2 at ?80 °C: triclinic, space group , a = 818.5(1), b = 1492.2(1), c = 1533.6(2) pm, α = 76.45(1)°, β = 84.22(1)°, γ = 77.99(1)°, Z = 2, R1 = 0.0416.  相似文献   

10.
Two complexes of gallium(III) with adduct ion pair compounds containing pyridine-2,6-dicarboxylic acid and two different Lewis bases are synthesized. The chemical formulae are (dmpH)[Ga(pydc)2]·2H2O, (1) and (bpyH2)1/2(pydcH2)1/2[Ga(pydc)2]·4H2O, (2) where pydc, dmp, and bpy are pyridine-2,6-dicarboxylate, 2,9-dimethyl-1,10-phenanthroline, and 4,4′-bipyridine respectively. The two crystal structures illustrate that the GaIII ion is six-coordinated by two pyridine-2,6-dicarboxylates. Hydrogen bonds as well as other noncovalent interactions such as ion-pairing, C-O...π, C-H...π, and π...π stacking play an important role in the formation of supramolecular systems. Particular attention is given to the molecular geometries and NMR properties of the complexes from the computational point of view. The electronic properties of the complexes are analysed using the parameters derived from the atoms in molecules (AIM) and natural bond orbital (NBO) methodologies at the B3LYP/6-311++G(2d,2p) computational level.  相似文献   

11.
The Cr(III) and Ca(II) complexes (dmpH)[Cr(pydc)2]?H2O (1) and [Ca2(pydc)2(H2O)6].2pydcH2 (2) were synthesized by reaction of 2,9-dimethyl-1,10-phenanthroline (dmp) and pyridine-2,6-dicarboxylic acid (pydcH2) with Cr(NO3)3 and Ca(NO3)2, respectively, and characterized using IR spectroscopy, single crystal X-ray diffraction method and solution studies. The space group and crystal system of these two compounds are P2 1/c and monoclinic. The crystal dimensions are a = 9.785(3) Å, b = 25.671(4) Å, c = 9.3402(16) Å, β = 90.790(17)° for (1) and a = 9.1319(4) Å, b = 14.8430(8) Å, c = 12.2449(7) Å, β = 98.227(5)° for (2). In complex (1), a water molecule presents in the crystal packing, linking the anionic and cationic fragments together by hydrogen bonding and thus increases the stabilization of crystal lattices. In complex (2), the coordinated water molecules relate each dimer to adjacent dimers forming infinite molecular ribbons by strong hydrogen bondings. Hydrogen bonding and ion pairing play an important role in stabilizing these crystals. The complexation reactions of pydc, dmp and pydc+dmp with Cr3+ and Ca2+ ions in aqueous solution were investigated by potentiometric pH titrations and the equilibrium constants for all major complexes formed were evaluated.  相似文献   

12.
Mirzaei  M.  Eshtiagh-Hosseini  H.  Alfi  N.  Aghabozorg  H.  Gharamaleki  J. Attar  Beyramabadi  S. A.  Khavasi  H. R.  Salimi  A. R.  Shokrollahi  A.  Aghaei  R.  Karami  E. 《Structural chemistry》2011,22(6):1365-1377
Structural Chemistry - Three new coordination compounds of Cu(II), Co(II), and Zn(II) based on different dicarboxylic acids formulated as (AcrH)[Cu(pydc)(pydcH)]·5H2O (1)...  相似文献   

13.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

14.
New bi- and trihomonuclear Mn(II), Co(II), Ni(II), and Zn(II) complexes with sulfa-guanidine Schiff bases have been synthesized for potential chemotherapeutic use. The complexes are characterized using elemental and thermal (TGA) analyses, mass spectra (MS), molar conductance, IR, 1H-NMR, UV-Vis, and electron spin resonance (ESR) spectra as well as magnetic moment measurements. The low molar conductance values denote non-electrolytes. The thermal behavior of these chelates shows that the hydrated complexes lose water of hydration in the first step followed by loss of coordinated water followed immediately by decomposition of the anions and ligands in subsequent steps. IR and 1H-NMR data reveal that ligands are coordinated to the metal ions by two or three bidentate centers via the enol form of the carbonyl C=O group, enolic sulfonamide S(O)OH, and the nitrogen of azomethine. The UV-Vis and ESR spectra as well as magnetic moment data reveal that formation of octahedral [Mn2L1(AcO)2(H2O)6] (1), [Co2(L1)2(H2O)8] (2), [Ni2L1(AcO)2(H2O)6] (3), [Mn3L2(AcO)3(H2O)9] (5), [Co3L2(AcO)3(H2O)9] · 4H2O (6), [Ni3L2(AcO)3(H2O)9] · 7H2O (7), [Mn3L3(AcO)3(H2O)6] (9), [Co2(HL3)2(H2O)8] · 4H2O (10), [Ni3L3(AcO)3(H2O)9] (11), [Mn3L4(AcO)3(H2O)9] · H2O (13), [Co2(HL4)2(H2O)8] · 5H2O (14), and [Ni3L4(AcO)3(H2O)9] (15) while [Zn2L1(AcO)2(H2O)2] (4), [Zn3L2(AcO)3(H2O)3] · 2H2O (8), [Zn3L3(AcO)3(H2O)3] · 3H2O (12), and [Zn3L4(AcO)3(H2O)3] · 2H2O (16) are tetrahedral. The electron spray ionization (ESI) MS of the complexes showed isotope ion peaks of [M]+ and fragments supporting the formulation.  相似文献   

15.
The proton transfer compound LH2 , (phenH+)2(pydc2—), has been prepared from 1, 10‐phenanthroline, phen, and 2, 6‐pyridinedicarboxylic acid, (dipicolinic acid), pydcH2. Characterization was performed using solution and solid phase CP/MAS 13C NMR and IR spectroscopy. The reactions of this adduct with ZnSO4·7H2O and Zn(NO3)2·4H2O give the complexes, [Zn(pydc)2][Zn(phen)2(H2O)2]·7H2O (1) and [Zn(phen)3]4(H(Hpydc)2)(NO3)7·26H2O (2) , respectively. These complexes were characterized by 1H and 13C NMR spectroscopy and single crystal X‐ray analysis. The complexes crystallize in the triclinic space group P1 with Z = 2. The unit cell dimensions for complex 1 and 2 are: a = 9.9838(9) Å, b = 14.7483(13) Å, c = 14.8365(13) Å and a = 12.640(4) Å, b = 15.855(5) Å, c = 21.830(7) Å, respectively. In complex 1 (pydc2—) and phen, are tri‐ and bidentate ligands, respectively, and an anionic [Zn(pydc)2]2— and cationic [Zn(phen)2(H2O)2]2+ complex are formed simultaneously. In complex 2 , three phen participate in complexation leaving hydrogen‐bis(pyridine‐2‐carboxylate), (H(Hpydc)2) as a supramolecular anion. The fragments (H(Hpydc)2), 7 NO3, and 26 H2O in complex 2 are joined together by extensive and strong H‐bonding; therefore, the structure is composed of [Zn(phen)3]48+, and an anionic hydrogen bond supramolecular assembly with the formula, {(H(Hpydc)2(NO3)7)8— · 26H2O}n. The anionic species (H(Hpydc)2) has a special position at the inversion center, as well as one of the NO3 anions, which is disordered over the inversion center. Most of the hydrogen bonds in complex 2 represent strong H‐bonding. The protonation constants of the building blocks of the pydc‐phen adduct, the equilibrium constants for the reaction of (pydc2—) with phenanthroline and the stoichiometry and stability of the ZnII complex with LH2 on aqueous solution were determined by potentiometric pH titration. The solution study results support self‐association between (pydc2—) and (phenH+) with a stoichiometry for the Zn(II) complex similar to that observed for the isolated crystalline complex.  相似文献   

16.
Naphthaldimines containing N2O2 donor centers react with platinum(II) and (IV) chlorides to give two types of complexes depending on the valence of the platinum ion. For [Pt(II)], the ligand is neutral, [(H2L1)PtCl2]·3H2O (1) and [(H2L3)2Pt2Cl4]·5H2O (3), or monobasic [(HL2)2Pt2Cl2]·2H2O (2) and [(HL4)2Pt]·2H2O (4). These complexes are all diamagnetic having square-planar geometry. For [Pt(IV)], the ligand is dibasic, [(L1)Pt2Cl4(OH)2]·2H2O (5), [(L2)Pt3Cl10]·3H2O (6), [(L3)Pt2Cl4(OH)2]·C2H5OH (7) and [(L4)Pt2Cl6]·H2O (8). The Pt(IV) complexes are diamagnetic and exhibit octahedral configuration around the platinum ion. The complexes were characterized by elemental analysis, UV-Vis and IR spectra, electrical conductivity and thermal analyses (DTA and TGA). The molar conductances in DMF solutions indicate that the complexes are non-ionic. The complexes were tested for their catalytic activities towards cathodic reduction of oxygen.  相似文献   

17.
Six heterometallic Zn(II) coordination polymers, Zn(H2O)3(FNA) (1), [NH4]2[Zn(H2O)2(FNA)2] (2), [ZnNa2(FNA)2]·3H2O (3), [ZnK2(FNA)2]·H2O (4), [ZnRb2(FNA)2]·2H2O (5) and [ZnMg(FNA)2]·4H2O (6) (H2FNA = 4-nitrobenzene-1,2-dicarboxylic acid), were synthesised by introducing different alkali/alkaline earth (AeI/AeII) metals. These complexes exhibit diverse structures with the different AeI/AeII metals used and distinct ligand coordination modes the ions provide. For 1 and 2, the Zn(II) centres with distorted octahedra are connected by FNA to form 1-D chain structures. The Zn(II) centres in 36 with distorted tetrahedra are linked by FNA to form 2-D anionic grid layers. For 35, these 2-D anionic grid layers are connected by alkali metal (Na, K and Rb) with the O–AeI–O connectivity to exhibit 3-D framework structures, while 6 features a 2-D Zn–Mg network. Luminescence properties of 16 have been investigated.  相似文献   

18.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

19.
Reactions of fresh M(OH)2 (M = Zn2+, Cd2+) precipitate and (RS)-2-methylglutaric acid (H2MGL), 2,2′-bipyridine (bipy), or 1,10-phenanthroline (phen) in aqueous solution at 50°C afforded four new metal–organic complexes [Zn2(bipy)2(H2O)2(MGL)2] (1), [Zn2(phen)2(H2O)(MGL)2] (2), [Cd(bipy)(H2O)(MGL)] · 3H2O (3), and [Cd(phen)(H2O)(MGL)] · 2H2O (4), which were characterized by single crystal X-ray diffraction, IR spectra, TG/DTA analysis as well as fluorescence spectra. In 1, the [Zn(bipy)(H2O)]2+ moieties are linked by R- and S-2-methylglutarate anions to build up the centrosymmetric dinuclear [Zn2(bipy)2(H2O)2(MGL)2] molecules. In 2, the 1-D ribbon-like chains [Zn2(phen)2(H2O)(MGL)2] n can be visualized as from centrosymmetric dinuclear [Zn2(phen)2(H2O)2(MGL)2] units sharing common aqua ligands. Both 3 and 4 exhibit 1-D chains resulting from [Cd(bipy)(H2O)]2+ and [Cd(phen)(H2O)]2+, respectively, bridged alternately by R- and S-2-methylglutarate anions in bis-chelating fashion. The intermolecular and interchain π···π stacking interactions form supramolecular assemblies in 1 and 1-D chains in 24 into 2-D layers. The hydrogen bonded lattice H2O molecules are sandwiched between 2-D layers in 3 and 4. Fluorescence spectra of 14 exhibit LLCT π → π* transitions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号