首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The two complexes (pydaH)2[Ce(pydc)2(H2O)2]2 · 2H2O (1) and (phenH)2[Bi(pydc)2(H2O)]2 · 5H2O (2) were prepared from the proton transfer compounds containing the 2,6‐pyridinedicarboxylate ion. 1 was synthesized from the reaction of Ce(NO)3 · 6H2O with the proton transfer compound, (pydaH2)(pydc), (pyda=2,6‐diaminopyridine, pydcH2=2,6‐pyridinedicarboxylic acid). 2 was synthesized from the reaction of proton transfer compound, (phenH)2(pydc), (phen=1,10‐phenanthroline), with Bi(NO3)3 · 5H2O. The characterization was carried out using IR, 1H and 13C NMR spectroscopy, elemental analysis and single crystal X‐ray diffraction. The complex 1 crystallizes in the space group of the triclinic system, and contains two molecules per unit cell. The structure has been refined to a final value for the crystallographic R factor of 0.0342 based on 8851 reflections. The unit cell parameters are: a = 9.753(2) Å, b = 10.503(2) Å, c = 10.774(2) Å, α = 83.905(4)°, β = 88.089(4)°, and γ = 82.636(3)°. The crystal structure illustrates that cerium atoms are connected together through the four‐membered ring Ce2O2. 2,6‐Pyridinedicarboxylate fragment acts as a tridentate ligand. The molecular structure contains four (pydc)2? ligands, two of which are bridge ligands linking the two central atoms. The complex 2 crystallizes in the space group of the triclinic system and contains two molecules per unit cell. The unit cell dimensions are: a = 8.8860(4) Å, b = 12.0132(6) Å, c = 13.0766(6) Å, α = 100.967(1)°, β = 96.681(1)° and γ = 94.191(1)°. The structure has been refined to a final value for the crystallographic R factor of 0.0471 based on 9576 reflections. In this complex, 2,6‐pyridinedicarboxylate moiety has acted as a tridentate ligand and the lattice is composed of binuclear unit, [Bi(pydc)2(H2O)]22?, (phenH)+ counter ions and five lattice waters. In both complexes hydrogen bonds, π‐π stacking and ion‐pairing play important roles in stabilizing the corresponding lattice. The stoichiometry and stability of the ZnII, CdII, PbII, and CeIII complexes with (pydaH2)(pydc) in aqueous solution were investigated by potentiometric pH titration. The solution studies revealed that the stoichiometry of the crystalline complexes of the proton transfer system (pydaH2)(pydc) with CeIII, obtained in this study, and those with ZnII, CdII and PbII, reported in our previous studies, are in close agreements. The complexation reactions of phen, pydc, and 2phen+pydc with BiIII in aqueous solution were investigated by potentiometric pH titrations, and the equilibrium constants for all major complexes formed are described.  相似文献   

2.
Two rare metal coordination complexes of yttrium(III) including 1,10‐phenanthroline, Y(phen)2(NO3)3 and (phenH)2[Y2(pydc)3(NO3)2·6H2O] (phen=1,10‐phenanthroline, pydc=2,6‐pyridinedicarboxylate), and a proton transfer compound (phenH+)2(pydc2?) were synthesized and characterized by elemental analysis, molar conductance, infrared spectra (IR), nuclear magnetic resonance (NMR) and thermal analysis. The proposed structures of yttrium complexes were exhibited. The in vitro biological activities of the newly synthesized complexes have also been investigated against Bacillus coli, Staphylococcus aureus and Candida albicans. The results showed that yttrium(III) complexes including 1,10‐phenanthroline exhibited better antibacterial/antifungal activity than their ligands and corresponding compounds.  相似文献   

3.
A novel proton transfer compound, (GH)2(phendc), ( 1 ), was synthesized from the reaction of 1,10‐phenanthroline‐2,9‐dicarboxylic acid, phendcH2, and guanidine hydrochloride, (GH)(Cl), (G: guanidine). The characterization was performed using IR, 1H and 13C NMR spectroscopy. The cobalt(II) compounds were synthesized using proton transfer compounds containing guanidinium counter ion. These proton transfer compounds are (GH)2(phendc), and (GH)2(pydc) (pydcH2: 2,6‐pyridinedicarboxylic acid). The chemical formulae and space groups are (GH)2[Co(phendc)2]·4H2O, (2) , and (GH)2[Co(H2O)6][Co(pydc)2]2, P21/n (3) . Non‐covalent interactions such as ionpairing, hydrogen bonding and π‐π stacking are discussed.  相似文献   

4.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

5.
Three new complexes of group thirteen metals, gallium(III), indium(III), and thallium(III) with proton transfer compounds, obtained from 2,6‐pyridinedicarboxylic acid (dipicolinic acid), were synthesized and characterized using elemental analysis, IR, 1H and 13C NMR spectroscopy and single crystal X‐ray diffraction. The gallium(III) and indium(III) complexes were prepared using (pydaH2)(pydc) (pyda = 2,6‐pyridinediamine, pydcH2 = dipicolinic acid) and thallium(III) complex was obtained from (creatH)(pydcH) (creat = creatinine). The chemical formulae and space groups of the complexes are (pydaH)[Ga(pydc)2] · 3.25H2O · CH3OH, ( 1 ), [In(pydc)(pydcH)(H2O)2] · 5H2O, Pna21 ( 2 ) and [Tl2(pydcH)3(pydc)(H2O)2], ( 3 ). Non‐covalent interactions such as ion‐pairing, hydrogen bonding and π‐π stacking are discussed. The complexation reactions of pyda, pydc, and pyda + pydc with In3+ and Ga3+ ions in aqueous solution were investigated by potentiometric pH titrations, and the equilibrium constants for all major complexes formed are described.  相似文献   

6.
The novel 1,10‐phenanthroline‐2,9‐dicarboxylate containing Chromium(III) complex, (pydaH)[Cr(phendc)2] · 5H2O, was synthesized using proton‐transfer compound LH2, (pydaH2)2+(phendc)2?, (pyda: 2,6‐pyridinediamine; phendcH2: 1,10‐phenanthroline‐2,9‐dicarboxylic acid) and thoroughly characterized by elemental analysis, IR spectroscopy, X‐ray crystallography and cyclic voltammetry. The complex crystallizes in the monoclinic space group P21/n with four formula units in the unit cell. The unit cell dimensions are: a = 13.962(3) Å, b = 14.529(3) Å, c = 16.381(3) Å and β = 106.691(4)°. In this complex, 1,10‐phenanthroline‐2,9‐dicarboxylate acts as a tridentate ligand and the lattice is composed of anionic hexacoordinated complex, [Cr(phendc)2]?, 2,6‐pyridiniumdiamine counter ion, (pydaH)+, and five lattice water molecules. Crystallographic characterization revealed that the resulting supramolecular structure is strongly stabilized by complicated network of hydrogen bonds between the crystallization water molecules, counter ion and both coordinated and uncoordinated carboxylate groups. There is no relevant π‐π interaction for this anionic complex between pyda or phendc moieties. The electrochemical studies indicated over potential for both the cathodic and anodic peaks of the complex with respect to the free Cr3+ ion, as a consequence of the energy requirement for rearrangement of the ligand at electrode surface.  相似文献   

7.
A Tri‐µ‐O‐S‐O coordinative manganese dimer: [Mn2(SO4)2(phen)4]·CH3OH (phen1,10‐phenanthroline) ( 1 ) was yielded by the reaction of 1,10‐phenanthroline and MnSO4·H2O in a mixed solvent of methanol and acetonitrile under room temperature and was structurally characterized. Single crystal analysis shows that complex 1 has polymeric structure based on binuclear Mn(II) units bridged by O‐S‐O groups of two SO42− anion. The UV spectrum of the complex clarifies that each metal‐organic building unit parallels with each other through the Π‐Π interactions of face‐to‐face separations of two 1,10‐phen planes among the complex, forming a layered structure. And the electronic paramagnetic resonance (EPR) signal clearly indicates that those manganese atoms in complex 1 are in +2 oxidation states.  相似文献   

8.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

9.
Abstract. Two bis‐triazole‐bis‐amide‐based copper(II) pyridine‐2,3‐dicarboxylate coordination polymers (CPs), [Cu(2,3‐pydc)(dtb)0.5(DMF)] · 2H2O ( 1 ) and [Cu(2,3‐pydc)(dth)0.5(DMF)] · 2H2O ( 2 ) (2,3‐H2pydc = pyridine‐2,3‐dicarboxylic acid, dtb = N,N′‐bis(4H‐1,2,4‐triazole)butanamide, and dth = N,N′‐bis(4H‐1,2,4‐triazole)hexanamide), were synthesized under solvothermal conditions. CPs 1 and 2 show similar two‐dimensional (2D) structures. In 1 , the 2,3‐pydc anions bridge the CuII ions into a one‐dimensional (1D) chain. Such 1D chains are linked by the dtb ligands to form a 2D layer. The adjacent 2D layers are extended into a three‐dimensional (3D) supramolecular architecture by hydrogen‐bonding interactions. The electrochemical properties of 1 and 2 were investigated.  相似文献   

10.
The proton transfer compound LH2 , (phenH+)2(pydc2—), has been prepared from 1, 10‐phenanthroline, phen, and 2, 6‐pyridinedicarboxylic acid, (dipicolinic acid), pydcH2. Characterization was performed using solution and solid phase CP/MAS 13C NMR and IR spectroscopy. The reactions of this adduct with ZnSO4·7H2O and Zn(NO3)2·4H2O give the complexes, [Zn(pydc)2][Zn(phen)2(H2O)2]·7H2O (1) and [Zn(phen)3]4(H(Hpydc)2)(NO3)7·26H2O (2) , respectively. These complexes were characterized by 1H and 13C NMR spectroscopy and single crystal X‐ray analysis. The complexes crystallize in the triclinic space group P1 with Z = 2. The unit cell dimensions for complex 1 and 2 are: a = 9.9838(9) Å, b = 14.7483(13) Å, c = 14.8365(13) Å and a = 12.640(4) Å, b = 15.855(5) Å, c = 21.830(7) Å, respectively. In complex 1 (pydc2—) and phen, are tri‐ and bidentate ligands, respectively, and an anionic [Zn(pydc)2]2— and cationic [Zn(phen)2(H2O)2]2+ complex are formed simultaneously. In complex 2 , three phen participate in complexation leaving hydrogen‐bis(pyridine‐2‐carboxylate), (H(Hpydc)2) as a supramolecular anion. The fragments (H(Hpydc)2), 7 NO3, and 26 H2O in complex 2 are joined together by extensive and strong H‐bonding; therefore, the structure is composed of [Zn(phen)3]48+, and an anionic hydrogen bond supramolecular assembly with the formula, {(H(Hpydc)2(NO3)7)8— · 26H2O}n. The anionic species (H(Hpydc)2) has a special position at the inversion center, as well as one of the NO3 anions, which is disordered over the inversion center. Most of the hydrogen bonds in complex 2 represent strong H‐bonding. The protonation constants of the building blocks of the pydc‐phen adduct, the equilibrium constants for the reaction of (pydc2—) with phenanthroline and the stoichiometry and stability of the ZnII complex with LH2 on aqueous solution were determined by potentiometric pH titration. The solution study results support self‐association between (pydc2—) and (phenH+) with a stoichiometry for the Zn(II) complex similar to that observed for the isolated crystalline complex.  相似文献   

11.
The title mononuclear [Cu(sq)(phen)2]·3H2O complex [sq is squarate (C4O4) and phen is 1,10‐phenanthroline (C12H8N2)] has been synthesized and the structure consists of a neutral mononuclear [Cu(sq)(phen)2] unit and three solvate water mol­ecules. The CuII ion has distorted square‐pyramidal coordination geometry, comprised of one carboxyl­ate O atom from a monodentate squarate ligand and four N atoms from two chelating phen ligands. An extensive three‐dimensional network of OW—H⋯O/OW hydrogen bonds, face‐to‐face π–­π interactions between the 1,10‐phenanthroline aromatic rings and a weak π–ring interaction are responsible for crystal stabilization.  相似文献   

12.
Two new CoII coordination polymers [Co4(tbip)4(bipy)4(H2O)4] ( 1 ) and [Co(tbip)(phen)(H2O)] · H2O ( 2 ) (H2tbip = 5‐tert‐butyl isophthalic acid, bipy = 2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, and single‐crystal X‐ray diffraction. Compound 1 is a tbip‐bridged tetranuclear cobalt(II) complex, which is further linked by hydrogen bonds to form a supramolecular network. Compound 2 shows a tbip‐bridged linear chain structure, which is extended by hydrogen bonds to generate a double chain. Magnetic measurements show that there are weak ferromagnetic interactions between the adjacent CoII ions in 1 .  相似文献   

13.
The reaction of solution 2,6‐pyridinedicarboxylic acid ( 1 ) and 2,2′‐Bipyridine with Pb(NO3)2 led to the coordination polymer [Pb(pydc)]n ( 2 ) (pydcH2 is 2,6‐pyridinedicarboxylic acid). This complex was characterized by elemental analysis, IR spectroscopy and single‐crystal structure of 2 . Crystal data for 2 at ?80 °C: monoclinic, space group P21/n, a = 977.2(1), b = 554.0(1), c = 1425.3(2) pm, β = 104.75(1)°, Z = 4, R1= 0.0261. The units [Pb(pydc)] form infinite chains along [010].  相似文献   

14.
Two metal‐organic coordination polymers with one‐dimensional infinite chain motif, [Cd(bqdc)(phen)2]n ( 1 ) and [Co(bqdc)(phen)(H2O)2]n ( 2 ) (H2bqdc = 2,2′‐biquinoline‐4,4′‐dicarboxylic acid, phen = 1,10‐phenanthroline), have been synthesized under similar solv/hydrothermal conditions and fully structural characterized by elemental analysis, IR, and single‐crystal X‐ray crystallography. Their thermal stability and photoluminescence properties were further investigated by TG‐DTA and fluorescence spectra. In both complexes, the adjacent metal ions (CdII for 1 and CoII for 2 ) are linked together by dicarboxylate groups of bqdc dianions in chelating bidentate and monodentate modes, respectively, generating a zigzag chain for 1 and linear chain for 2 . The relatively higher thermal stability up to 324 °C for 1 and strong fluorescence emissions jointly suggest that they are good candidates for luminescent materials.  相似文献   

15.
Eight new two‐ligand complexes of copper(II) with 1,10‐phenanthroline and one of four different α‐hydroxy‐carboxylic acids (glycolic, lactic, mandelic and benzylic) were prepared. The complexes of general formula [Cu(HL)2(phen)] · nH2O (HL = monodeprotonated acid) ( 1 – 4 ) were characterized by elemental analysis, IR, electronic and EPR spectroscopy, magnetic measurements and thermo‐gravimetric analysis. The complexes of general formulae [Cu(HL)(phen)2](HL) · H2L · nSolv [ 1 a (HL = HGLYO, n = 1, Solv = MeCN) and 3 a (HL = HMANO, n = 0)] and [Cu(L)(phen)(OH2)] · nH2O [ 2 a (L = LACO2–, n = 4) and 4 a (L = BENO2–, n = 2)] were characterized by X‐ray diffractometry. In all these latter a pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, the distortion of which towards a trigonal bipyramidal configuration has been evaluated in terms of the parameter τ. In 1 a and 3 a there are three forms of α‐hydroxycarboxylic acid: a monodentate monoanion, a monoanionic counterion, and a neutral molecule lying in the outer coordination sphere; in 2 a and 4 a the α‐hydroxycarboxylic acid is a bidentate dianion coordinating through carboxyl and hydroxyl oxygens.  相似文献   

16.
Syntheses of the sky blue complex compounds [Ni(H2O)3(phen)(C5H6O4)] · H2O ( 1 ) and [Ni(H2O)2(phen)(C5H6O4)] ( 2 ) were carried out by the reactions of 1,10‐phenanthroline monohydrate, glutaric acid, NiSO4 · 6 H2O and Na2CO3 in CH3OH/H2O at pH = 6.9 and 7.5, respectively. The crystal structure of 1 (P 1 (no. 2), a = 14.289 Å, b = 15.182 Å, c = 15.913 Å, α = 67.108°, β = 87.27°, γ = 68.216°, V = 2934.2 Å3, Z = 2) consists of hydrogen bonded [Ni(H2O)3‐ (phen)(C5H6O4)]2 dimers and H2O molecules. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, three water O atoms and one carboxyl O atom from one monodentate glutarato ligand (d(Ni–N) = 2.086, 2.090 Å; d(Ni–O) = 2.064–2.079 Å). Through the π‐π stacking interactions and intermolecular hydrogen bonds, the dimers are assembled to form 2 D layers parallel to (0 1 1). The crystal structure of 2 (P21/n (no. 14), a = 7.574 Å, b = 11.938 Å, c = 18.817 Å, β = 98.48°, V = 1682.8 Å3, Z = 4) contains [Ni(H2O)2(phen)(C5H6O4)2/2] supramolecular chains extending along [010]. The Ni atoms are octahedrally coordinated by two N atoms of one phen ligand, two water O atoms and two carboxyl O atoms from different bis‐monodentate glutarato ligands with d(Ni–N) = 2.082, 2.105 Å and d(Ni–O) = 2.059–2.087 Å. The supramolecular chains are assembled into a 3 D network by π‐π stacking interactions and interchain hydrogen bonds. A TG/DTA of 2 shows two endothermic effects at 132 °C and 390 °C corresponding to the complete dehydration and the lost of phen.  相似文献   

17.
A novel coordination polymer [Cd(pc)(phen)(H2O)]n (H2pc = pamoic acid, phen = 1,10‐phenanthroline) has been synthesized under hydrothermal conditions. Single crystal X‐ray diffraction analysis reveals that the compound crystallizes in triclinic space group P1. All the CdII atoms in the compound are hexacoordinate and are linked by pamoicate ligands to form a one‐dimensional zigzag chain. Furthermore, two adjacent zigzag chains are connected by the μ2‐(H2O) molecules to form a double‐chain with rhombic grids. There exist intermolecular C–H ··· π contacts, π–π stacking and hydrogen‐bonding interactions. Compound 1 displays strong fluorescent emission in the solid state at room temperature.  相似文献   

18.
Three cobalt(II) coordination polymers, [Co2(tatb)2(2,2′‐bipy)2 (H2O)2 · DMA · 2H2O] ( 1 ), [Co2(tatb)2(1,10‐phen)2(H2O)2 · 2H2O] ( 2 ) and [Co(tatb)(1,3‐dpp) · H2O] ( 3 ) (H3tatb = 4,4′,4′′‐(1,3,5‐triazine‐2,4,6‐triyl)tribenzoic acid; 2,2′‐bipy = 2,2′‐bipyridyl; 1,10‐phen = 1,10‐phenanthroline; 1,3‐dpp = 1,3‐bis(pyridin‐4‐yl)propane), were synthesized solvothermally and characterized by single‐crystal and powder X‐ray diffraction (PXRD), as well as IR spectroscopy. Complexes 1 and 2 exhibit 1D double‐chain structures, which further connect into interesting 3D networks by hydrogen bond and strong π–π interactions. Complex 3 possesses 2D 44‐sql topology, which is packed parallel in an AA fashion. Moreover, thermal stability properties and photoluminescence properties of 1 , 2 and 3 were also investigated.  相似文献   

19.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   

20.
The reactions of anthraquinone‐2,6‐disulfonic acid disodium salt (Na2a‐2,6‐dad) with CuII, MnII, and ZnII with 1,10‐phenanthroline (phen) or 2,2′‐dipyridyl (bipy) under hydrothermal conditions formed two or three‐dimensional supramolecules of stoichiometries [Cu(a‐2,6‐dad)(phen)(H2O)3](H2O)4 ( 1 ), [Mn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 2 ), and [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ), which were synthesized and characterized. The arrangement around each metal atom is distorted octahedral. The ligands in all the compounds are engaged in intermolecular hydrogen bonding leading to the formation of hydrogen‐bonded networks, the compounds show novel π–π stacking interactions. Photoluminescence measurements indicate that the compound [Zn(a‐2,6‐dad)(bipy)2(H2O)](H2O)2 ( 3 ) shows strong blue luminescence in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号