首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The montmorillonite has been subjected to modification through ion-exchange reaction by N,N'-didodecyl-N,N'-tetramethylethanediammoniumdiiodide (DEDMAI). The modified sample was studied by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The basal spacing of modified montmorillonite was determined as 28.72 A. The IR spectra of organomontmorillonite showed changes in C-H vibrations. The characterization of N,N'-didodecyl-N,N'-tetramethylethanediammonium montmorillonite (DEDMAM) and the adsorption of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenoxybutyric acid (2,4-DB), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) on organomontmorillonite was studied as a function of the solution concentration. The adsorption energy (E) and adsorption capacity (qm) for phenoxyalkanoic acid herbicides adsorbing on organomontmorillonite (DEDMAM) were estimated using the Dubinin-Radushkevic (D-R) equation. These isotherms were modeled according to Freundlich and Dubinin-Radushkevic adsorption isotherms. The sorption of the herbicides on DEDMAM increased in order of MCPA<2,4-D<2,4-DB<2,4,5-T.  相似文献   

2.
A method has been developed for the determination of trace quantities of 2,4-dichloro-phenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 2,4-dichlorophenol (2,4-DCP), and 2,4,5-trichlorophenol (2,4,5-TCP) in human and rat urine. The method involves acid hydrolysis of the phenolic conjugates, extraction of the free phenols and acids, ethylation with diazoethane, silica-gel column chromatography clean-up of the derivatized urine extract, and gas chromatographic determination using the electron-capture detector. The average recoveries of 2,4-D, 2,4,5-T, 2,4-DCP, and 2,4,5-TCP from rat urine spiked with known amounts of the herbicides and their phenols were 94%, 98%, 92%, and 90%, respectively. The limits of detection for 2,4-D, 2,4,5-T, DCP, and TCP in rat urine were: 0.05, 0.01, 0.10, and 0.01 ppm, respectively. The method was used to analyze urine of rats given various levels of 2,4-D and 2,4,5-T by gavage. Results showed that levels of exposure of 3.75 mcg/kg for 2,4-D and 5.0 mcg/kg for 2,4,5-T in rats can be detected in urine within 24 hr from exposure. Urine samples from occupationally exposed people were analyzed and found to contain 0.2 to 1.0 ppm 2,4-D and 0.05 to 3.6 ppm 2,4,5-T.  相似文献   

3.
Solid-phase extraction of acidic herbicides   总被引:4,自引:0,他引:4  
A discussion of solid-phase extraction method development for acidic herbicides is presented that reviews sample matrix modification, extraction sorbent selection, derivatization procedures for gas chromatographic analysis, and clean-up procedures for high-performance liquid chromatographic analysis. Acidic herbicides are families of compounds that include derivatives of phenol (dinoseb, dinoterb and pentachlorophenol), benzoic acid (acifluorfen, chloramben, dicamba, 3,5-dichlorobenzoic acid and dacthal--a dibenzoic acid derivative), acetic acid [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)], propanoic acid [dichlorprop, fluazifop, haloxyfop, 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP) and silvex], butanoic acid [4-(2,4-dichlorophenoxy)butanoic acid (2,4-DB) and 4-(4-chloro-2-methylphenoxy)butanoic acid (MCPB)], and other miscellaneous acids such as pyridinecarboxylic acid (picloram) and thiadiazine dioxide (bentazon).  相似文献   

4.
Summary A simple and rapid procedure for the two-dimensional TLC separation and identification of some chlorinated insecticides and herbicides is described. The separation is carried out on silica gel G with the following solvent systems: a) benzene-glacial acetic acid-n-hexane and b) petroleum fraction b.p. 80–100°C. The identification is achieved by spraying the chromatogram with diphenylamine and irradiating with U.V. light. The following pesticides were used in the procedure: aldrin, isodrin, dieldrin, endrin, p,p-DDT, p,p-DDE, lindane, toxaphene, methoxychlor, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxyacetic acid)-butyl ester (2,4-DB), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), 4-chloro-2-methylphenoxyacetic acid (MCPA), 4-chlor-2-methylphenoxypropionic acid (MCPP) and dalapon. The herbicides 2,4-DB and MCPP could not be separated.
Zusammenfassung Eine einfache und schnelle Methode zur zweidimensionalen dünnschichtchromatographischen Trennung und Identifizierung chlorierter Insecticide und Herbicide wird beschrieben. Die Trennung wird auf Silicagel G mit Benzol-Eisessig-n-Hexan bzw. der Benzinfraktion Kp 80–100°C durchgeführt. Die Identifizierung erfolgt durch Besprühen mit Diphenylamin und UV-Bestrahlung. Folgende Pesticide wurden untersucht: Aldrin, Isodrin, Dieldrin, Endrin, p,p-DDT, p,p-DDE, Lindan, Toxaphen, Methoxychlor, 2,4-Dichlorphenoxyessigsäure (2,4-D), 4-(2,4-Dichlorphenoxyessigsäure)-butylester (2,4-DB), 2,4,5-Trichlorphenoxyessigsäure (2,4,5-T), 4-Chlor-2-methylphenoxyessigsäure (MCPA), 4-Chlor-2-methylphenoxypropionsäure (MCPP) und Dalapon. Die Herbicide 2,4-DB und MCPP konnten nicht getrennt werden.
  相似文献   

5.
A practical method for residue analysis of 2,4-D, dicamba and 2,4,5-T in baked tobacco leaves has been developed using nonaqueous CE (NACE). The herbicide residues of 2,4-D, dicamba and 2,4,5-T in tobaccos were extracted by ultrasonication with ethyl acetate, followed by a cleanup procedure with gel permeation chromatography. The separation of 2,4-D, dicamba and 2,4,5-T by NACE was optimized based on orthogonal experiment design with four factors at three levels. The optimal NACE condition was established with the running buffer of 40.0 mmol/L ammonium acetate in 90% CH3CN (apparent pH 10.2), and the applied voltage of -25 kV over a capillary of 50 microm id x 46 cm (37.5 cm to the detector window), which gave a baseline separation of 2,4-D, dicamba and 2,4,5-T within 15 min. The LOD were ca. 0.4-0.6 microg/mL for the three herbicides, whereas the overall recovery ranged from 80.8 to 84.1%. The proposed method has been successfully applied to measure 300 real tobacco samples, and the residue profiles of the three herbicides in tobacco samples were obtained and evaluated.  相似文献   

6.
Procedures were developed for the ultrasonic and microwave extraction of pesticides, 2,4-dichlorophenoxyacetic (2,4-D) and 2,4,5-trichlophenoxyacetic (2,4,5-T) acids from soils for the subsequent determination by fluorescence polarization immunoassay (FPIA). The effect of the matrix composition of soils on the FPIA results was studied, and the optimum extractants and extraction conditions were selected. It was found that 40% ethanol is optimum for both extraction and FPIA determination, because it does not cause antibody denaturation. The recovery of pesticides in soil was 80–132% for 2,4-D and 101–138% for 2,4,5-T. Microwave extraction is more efficient than ultrasonic extraction for the determination of 2,4-D and 2,4,5-T in soil. The detection limit in soil and the analytical range are 2 and 4–200 μg/g, respectively, for 2,4-D and 20 and 80–5000 μg/g, respectively, for 2,4,5-T. Results of the determination of 2,4-D in soil by FPIA are in good agreement with the results of the determination by high-performance liquid chromatography. The procedures can be used for the rapid determination of chlorophenoxy acids in soils.  相似文献   

7.
Polarization fluoroimmunoassays (PFIA) were developed for the chlorinated pesticides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T). In order to optimize the PFIA procedures, a number of fluorescein-labeled 2,4-D and 2,4,5-T derivatives were synthesized and the influence of their structures on PFIA characteristics was studied. Also, several antisera were tested in developing the PFIA for 2,4,5-T. The assays were adapted for use with the Abbott TDx Analyzer and could be run in automatic mode by the adaptation of existing software and protocols. Dynamic ranges for 2,4-D and 2,4,5-T were 0.2-200 ng mL–1 and 30-10 000 ng mL–1, respectively. Total time for the automated assay of 20 samples was about 22 min. PFIA provides a suitable means for screening of a large number of samples. The rapid determination of 2,4,5-T, which is one of the precursors of polychlorinated dibenzo-p-dioxins, one of the most toxic groups of pollutants, may potentially be used to provide preliminary evidence of dioxin contamination.  相似文献   

8.
王家斌  吴芳玲  赵琦 《色谱》2015,33(8):849-855
采用C18毛细管整体柱作为固相微萃取整体柱,构建在线固相微萃取-高效液相色谱联用系统,同步富集检测环境水样中的5种苯氧羧酸类除草剂。详细考察了联用系统运行条件对富集检测的影响。联用系统运行最佳参数为:固相微萃取整体柱长度20 cm,进样流速0.04 mL/min,进样13 min,洗脱流速0.02 mL/min,洗脱5 min。在最佳条件下,5种苯氧羧酸类除草剂的检出限为:9 μg/L (苯氧丙酸)、4 μg/L (2-(2-氯)-苯氧丙酸)、4 μg/L (2-(3-氯)-苯氧丙酸)、5 μg/L (2,4-二氯苯氧乙酸)、5 μg/L (2-(2,4-二氯苯氧基)丙酸)。与HPLC系统直接进样对比,联用系统对5种检测对象表现出优良的富集能力。5种苯氧羧酸类除草剂的回收率在79.0%~98.0%之间(RSD≤3.9%)。该方法成功应用于水样中5种苯氧羧酸类除草剂的检测,结果令人满意。  相似文献   

9.
采用气相色谱–质谱联用法检测棉花中3种苯氧羧酸类除草剂[2,4-D,2,4,5-T,2-甲-4-氯丁酸(MCPB)]的残留量。样品用甲酸酸化的丙酮提取,硫酸催化甲酯化反应,用气相色谱–质谱联用仪测定。采用HPLC法与GC–MS法对提取与衍生化步骤进行优化。2,4-D,2,4,5-T,MCPB 3种化合物在0.075~7.5 mg/kg范围内线性均良好,检出限分别为0.5,0.5,0.8μg/kg,测定结果的相对标准偏差分别为4.1%,4.3%,4.0%(n=5),方法回收率分别为93.6%,95.5%,93.9%。该方法各项指标均可满足检测要求。  相似文献   

10.
构建了高岭石铝氧八面体层表面模型Al13O48H57和硅氧四面体层表面模型Si13O37H22,采用B3LYP/6-31G(d,p)方法, 对其与2,4-二氯苯氧乙酸(2,4-D)、 2,4-二氯苯氧丙酸(2,4-DP)、 2,4-二氯苯氧丁酸(2,4-DB)、 2-甲基-4-氯苯氧乙酸(MCPA)、 2-甲基-4-氯苯氧丙酸(MCPP)和2-甲基-4-氯苯氧丁酸(MCPB)等苯氧羧酸类农药分子间的相互作用及吸附性质进行了研究, 包括优化的几何构型、 结构参数、 吸附能及自然键轨道(NBO)电荷. 八面体层表面的中心原子(OH2, OH3及OH11)与四面体层表面的中心原子(O2, O3及O11)并未表现出明显的吸附活性. 相较于侧链为乙酸基的分子, 含有丙酸基或丁酸基的分子因带有更多的吸附位点而具有较强的吸附性. 研究发现MCPP的吸附性高于MCPA. 结合2,4-D的吸附性高于MCPA的结论, 可以推断2,4-D与MCPA更倾向于吸附在高岭石的硅氧层表面. 因此在农药施用的过程中, 应充分考虑各分子的活性及其与高岭石表面的作用强弱, 确保淋洗对去除农药在土壤中残留的可行性.  相似文献   

11.
In this work, an isotope dilution method for determination of selected acidic herbicides by high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS) was developed for surface water samples. Average percent recoveries of native analytes were observed to be between 70.8 and 93.5% and average recoveries of labeled quantification standards [(13)C(6)]2,4-D and [(13)C(6)]2,4,5-T were 85.5 and 101%, respectively. Using this method, detection limits of 0.05 ng/L for dicamba, MCPA, MCPP, and triclopyr, and 0.5 ng/L for 2,4-D were routinely achieved. The method was applied to measuring the concentration of these analytes in surface water samples collected from five sampling locations in the Lower Fraser Valley region of British Columbia, Canada. All of the herbicides monitored were detected at varying levels in the surface water samples collected. The highest concentrations detected for each analyte were 345 ng/L for 2,4-D, 317 ng/L for MCPA, 271 ng/L for MCPP, 15.7 ng/L for dicamba, and 2.18 ng/L for triclopyr. Average detection frequencies of the herbicides were 95% for MCPA, 80% for MCPP, 70% for dicamba, 65% for 2,4-D, and 46% for triclopyr. Seasonal variations of herbicide levels are also discussed.  相似文献   

12.
Phenoxyacetic acids are widely used herbicides. The toxicity of phenoxyacetic acids is debated, but high-level exposure has been shown to be hepatotoxic as well as nephrotoxic in animal studies. An inter-species difference in toxic effects has been found, with dogs particularly susceptible. In this study a method using liquid chromatography/triple quadrupole mass spectrometry (LC/MS/MS) is described for the analysis of 4-chloro-2-methylphenoxyacetic acid (MCPA), and its metabolite 4-chloro-2-hydroxymethylphenoxyacetic acid (HMCPA), 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in human urine. The urine samples were treated by acid hydrolysis to degrade possible conjugations. The sample preparation was performed using solid-phase extraction. Analysis was carried out using selected reaction monitoring (SRM) in the negative ion mode. Quantification of the phenoxyacetic acids was performed using [(2)H(3)]-labeled MCPA and 2,4-D as internal standards. The method was linear in the range 0.05-310 ng/mL urine and has a within-run precision of 2-5%. The between-run precision in lower concentration ranges was between 6-15% and between 2-8% in higher concentration ranges. The limit of detection was determined to 0.05 ng/mL. The metabolites in urine were found to be stable during storage at -20 degrees C. To validate the phenoxyacetic acids as biomarkers of exposure, the method was applied in a human experimental oral exposure to MCPA, 2,4-D and 2,4,5-T. Two healthy volunteers received 200 microg of each phenoxyacetic acid in a single oral dose followed by urine sampling for 72 h post-exposure. After exposure, between 90 and 101% of the dose was recovered in the urine. In the female subject, 23%, and in the male subject 17%, of MCPA was excreted as HMCPA.  相似文献   

13.
The significance of this research is that it improves analytical methodology used for organic chemicals in aqueous solutions by establishing the feasibility of heterogeneous chemical derivatization at the liquid-solid interface (i.e., solid-phase reaction or solid-phase derivatization). A solid-phase derivatization method for determining chlorinated herbicide acids was developed. Solid-phase extraction was used to concentrate and retain analytes on sorbents for subsequent solid-phase derivatization. Background interferences were removed from the chromatograms by electronically subtracting the responses of blank, nonfortified analyses from spiked samples. Two extraction sorbents (octadecyl bonded silica and polystyrene-divinylbenzene) and two derivatizing reagents (BF3-MeOH and trimethylsilyldiazomethane) were investigated. Recovery of 13 chlorinated herbicide acids--including pentachlorophenol, dinoseb, and bentazon (having a derivatizable functional group, -OH or -NH, bonded directly to a phenyl group); dicamba, picloram, acifluorfen, 3,5-dichlorobenzoic acid, and dacthal (having a derivatizable functional group, -COOH, bonded directly to a phenyl group); and 2,4-D, 2,4,5-T, dichlorprop, 2,4,5-TP, and 2,4-DB (having a derivatizable functional group, -COOH, bonded directly to a sp3 carbon atom)--was tested. The analytical method developed was proven successful for determining acidic herbicides, except for the dacthal diacid metabolite, in aqueous samples.  相似文献   

14.
《Analytical letters》2012,45(13-14):1421-1433
Abstract

Amides of 14 carboxylic acid herbicides were prepared by reacting the free acid with the amine in toluene for 1 hr at 80[ddot]C in the presence of PCl3 or P2I4. The acids include phenoxyacetic acids, arylacetic acids, and benzoic acids. Aniline, o-toluidine, 3,5-bis(trifluoromethyl)aniline, piperidine, and tetrahydroquinoline were the amine components. Excess of reagents and by-products of the reaction were removed by partitioning into aqueous acid and base. Retention times relative to 2,4-D anilide on 1% OV-22 and FSOT RSL-150 columns are listed for the anilides and should be useful for confirmation purposes. The anilides of 2,4-D, silvex and 2,4,5-T were obtained in better than 90% yield.  相似文献   

15.
辛国斌  谭家镒  姚丽娟  朱昱  姜兆林  宋辉 《色谱》2008,26(1):116-118
建立了一种血液中2,4-二氯苯氧乙酸(2,4-D)、2-(2,4-二氯苯氧)-丙酸(2,4-DP)和4-氯-2-甲基-苯氧乙酸(MCPA)3种苯氧羧酸类除草剂的分析方法.血样用0.1 mol/L盐酸稀释后用GDX401大孔树脂吸附、用乙醚洗脱,萃取物用二氯丙醇在硫酸催化下进行酯化衍生,衍生物经气相色谱-电子捕获检测.2,4-D、2,4-DP和MCPA的检测限分别为20,8和40 ng/mL.定量分析用2,4-二氯苯乙酸作内标,线性关系和回收率结果均令人满意.  相似文献   

16.
Zusammenfassung Es wird eine Methode für die gaschromatographische Bestimmung von 11 herbiciden Phenoxyalkancarbonsäuren sowie deren Ester und Konjugate in Pflanzenmaterial beschrieben. Nach alkalischer Hydrolyse werden die Säuren aus dem angesäuerten Hydrolysat durch Aceton/Wasser/Dichlormethan-Verteilung extrahiert. Der Extrakt wird über Gel-Chromatographie an Bio Beads S-X3 und eine Säure/Base-Ausschüttelung gereinigt. Die Säuren werden mit Methanol/Schwefelsäure verestert. Die gaschromatographische Bestimmung erfolgt massenfragmentographisch als Methylester. 2,4-D, 2,4-DB, Dichlorprop, Diclofop-methyl, Fenoprop und 2,4,5-T können gas-chromatographisch auch mit dem Elektroneneinfangdetektor bestimmt werden, wenn die Methylesterlösungen an einer Mini-Kieselgel-Säule nachgereinigt werden.
Gas-chromatographic determination of pesticide residues after clean-up by gel-permeation chromatography and mini-silica gel-column chromatography4. Communication. gas-chromatographic determination of 11 herbicidal phenoxyalkyl acids and their esters
Summary A method is described for the gas-chromatographic determination of 11 herbicidal phenoxyalkyl acids, their esters and conjugates in plant material. The method includes alkaline hydrolysis, extraction of the acids by aceton/water/dichloromethane partition, gel permeation Chromatography, acid/base distribution, methylation with methanol/sulphuric acid and detection by gas-chromatography/mass fragmentography. 2,4-D, 2,4-DB, dichlorprop, diclofop methyl, fenoprop and 2,4,5-T can likewise be detected by electron-capture gas-chromatography after additional clean-up of the methyl ester solutions by minisilica gel-column Chromatography.
1. Mitt.: Organochlor-Pflanzenbehandlungsmittel in Tabak und Tabakerzeugnissen. Beitr. Tabakforsch. Int. 10, 73–79 (1979). 2. Mitt.: Bestimmung der Fungizide Bitertanol, Fluotrimazol, Fuberidazol, Imazalil, Rabenzazole, Triadimefon und Triadimenol in Pflanzen und Boden. Pflanzenschutz-Nachrichten Bayer 33, 61–85 (1980). 3. Mitt.: Methode zur Aufarbeitung von Lebensmitteln und Futtermitteln pflanzlicher und tierischer Herkunft für die Multirückstandsbestimmung lipoid- und wasserlöslicher Pflanzenbehandlungsmittel. Fresenius Z. Anal. Chem. 301, 300–307 (1980)  相似文献   

17.
The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge. Two precursor product ion transitions per analyte are measured and evaluated to provide the maximum degree of confidence in results. Average recoveries for 3 different soil types tested ranged from 72 to 107% for all compounds with the exception of 2,4-DB at 56-99%. Average recoveries for the 3 different vegetation types studied were lower and ranged from 53 to 80% for all compounds.  相似文献   

18.
Simutaneous analysis of seven commonly used herbicides, 2,4-D methyl ester, 2,4-D methyl ester, 2,4,5-T methyl ester, silvex methyl ester, ramrod, CIPC and DEF, by gas-liquid chromatography with an electron capture detector was attempted. Two packed columns (which are generally used for the analysis of chlorinated pesticides) and two chemically bonded fused silica capillary columns were used for the analysis. When the packed columns were used, ramrod always interfered with the analysis of 2,4-D methyl ester and/or silvex methyl ester. Complete separation with reasonable analysis time can be achieved using one of the chemically bonded fused silica capillary columns.  相似文献   

19.
A sensitive dipstick assay for 2,4-dichlorophenoxyacetic acid (2,4-D) detection was developed. The assay was based on the competitive reaction of 2,4-D and enzyme tracer with monoclonal antibodies immobilised on an Ultrabind? membrane. The binding of enzyme tracer on the test strip was determined by a simple, portable reflectometer as remission at 657 nm. Using this technique, 2,4-D could be detected in a concentration range of 0.5 μg/L to 100 μg/L. The center point of the 2,4-D test was found at a concentration of 6 μg/L. Cross-reactivity with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) as determined by this dipstick assay was 2.5% and 3% by standard ELISA technique using microtiter plates. The assay was applied in the detection of 2,4-D in real water samples, and sensitivity was comparable to spiked water samples. If combined with an effective extraction procedure that results in recovery rates of 90%, the dipstick assay can be used to monitor human exposure to 2,4-D from contamination in water, from oranges and in testing urine samples. Received: 2 September 1998 / Revised: 29 January 1999 / Accepted: 31 January 1999  相似文献   

20.
Summary A fuming sulphuric acid-ethanol esterification method has been applied to chlorophenoxy acids and some other herbicides. This method is compared with esterification by iodoethane and diazomethane. The chlorophenoxy acids studied were: 2,4-D, dichlorprop, MCPA, MCPB, mecoprop and 2,4,5-T. Other herbicides studied were: benazolin, bentazone, bromophenoxime, bromoxynil, chlorthal, dicamba, 3,6-dichloropicolinic acid, dinoseb, ethephon, fluroxypyr, glyphosate, haloxyfop, ioxynil, picloram, 2,3,6-TBA and triclopyr. Fuming sulphuric acid-ethanol esterification can be successfully applied to chlorophenoxy acids, benazolin, 3,6-dichloropicolinic acid, dinoseb, fluroxypyr, haloxyfop, picloram and triclopyr. The reproductibility of the method is ±5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号