首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以炭黑、石墨、碳纤维等炭系与基体树脂复合改性得到体积电阻率小于0.1的导电高分子材料。研究了不同复合体系及不同配方的复合材料的导电性能,其中尤以SIS/PP体系中碳纤维占填料量32.5%的材料导电率高、力学性能和加工性能良好,并与石墨毡有较好的粘接性。选用该体系作为钒电池集流板,考察了电池性能,研究结果表明,导电高分子材料可以作为钒电池集流体材料,并在钒电池中具有良好的应用前景。  相似文献   

2.
碳纳米管与石墨烯在储能电池中的应用   总被引:2,自引:0,他引:2  
李健  官亦标  傅凯  苏岳锋  包丽颖  吴锋 《化学进展》2014,26(7):1233-1243
当今社会日益增长的能源与环境需求对储能电池技术的发展既是机遇也是严峻的挑战。纳米碳材料如碳纳米管与石墨烯因其优异的导电能力、良好的机械性能以及独特的形貌与结构特征在储能电池技术领域中的应用越来越普遍。本文通过综述近年来碳纳米管与石墨烯分别作为锂离子电池的复合电极材料、负极活性材料、导电添加剂以及新型锂硫电池用复合导电载体的最新应用进展,重点讨论了这两类纳米碳材料的不同应用模式对储能电池容量性能、倍率性能以及循环寿命的影响。同时对目前研究中存在的问题进行了总结,并对未来发展方向,如开发低成本与环境友好的高质量材料合成技术、提升材料的分散能力以有效构筑复合电极结构以及开发新的应用模式等进行了展望。  相似文献   

3.
聚甲基丙烯酸甲酯/石墨薄片纳米复合及其导电性能研究   总被引:5,自引:0,他引:5  
在聚合物绝缘材料基体中添加入足够数量的导电填料 ,聚合物便具有导电性或半导体性能 .石墨材料 ,由于资源丰富、价廉、性质稳定 ,被广泛用作导电聚合物复合材料的填料 .一般 ,填料含量越高 ,复合材料的导电性能越好 ,但是材料的力学性能也随之劣化 ,特别是材料脆性增加 .将石墨加工成纳米级粒子 ,再与聚合物纳米复合 ,有望用较少的石墨填充量使复合材料具有良好的电传导性能 ,从而保持材料的力学性能 .最近报道的利用膨胀石墨与聚合物实现纳米复合的研究引起了人们的兴趣 ,如所报道的尼龙 6 膨胀石墨[1] 、PS PMMA 膨胀石墨[2 ] 、PP …  相似文献   

4.
聚酰胺材料是一种重要的工程塑料和合成纤维原料,解决材料使用过程中的表面静电堆积问题是提升材料性能、扩展其应用领域的重要研究方向,因此发展了多种通过物理与化学的方法研究制备抗静电聚酰胺材料的技术.聚苯胺以其单体原料易得、合成工艺简单、掺杂现象独特、电导率较高、在空气中具有良好的稳定性等特点,被认为是最有前途的导电高分子之一,但其缺点也很明显,即加工性能很差.以聚苯胺作为抗静电剂与聚酰胺复合,不但大大提高了聚酰胺材料在应用于织物、涂料、输油管等领域时的抗静电性能,还可以解决聚苯胺的加工问题.基于近年来聚酰胺/聚苯胺导电复合材料的制备方法和复合材料特性,综述了聚酰胺/聚苯胺复合纤维、复合薄膜、复合粉末、三相复合等导电复合材料体系的制备方法、研究进展及应用领域.  相似文献   

5.
钒氧基化合物作为钒基化合物中重要的一员,其具有比容量高、价格低廉等特点,是一种极具有前景的电极材料,然而其电导率低、可溶解于电解液,造成充放电过程中倍率、循环稳定性差。本文介绍了钒氧基化合物作为锂离子/钠离子电池电极材料的研究进展,重点介绍了钒氧基化合物电化学性能降低的原因。综述了针对钒氧基化合物问题所采用的离子掺杂、表面包覆、导电物质复合解决办法,并讨论了一些具有代表性的改性后电极材料的制备方法、电化学性能及相应机制,且展望了钒氧基化合物未来的研究方向。  相似文献   

6.
石墨作为锂离子电池的负极材料已经使用了很长时间。但由于其嵌锂容量低,已不能满足动力电池快速发展的需求。而锡可以与锂形成合金,有可能取代石墨成为下一代锂离子电池负极材料。但是单纯的金属锡在电池循环过程中发生巨大的体积变化,容易导致电极材料的粉化。而碳材料具有较高的导电性,良好的机械性能和储锂性能。为了充分发挥金属锡和碳材料的优势,锡-碳(Sn-C)复合材料得到了广泛研究。本文详细介绍了无定型碳、石墨(G)、石墨烯(GP)、碳纳米管(CNT)、碳纳米纤维(CNF)等碳材料作为惰性的导电基体与锡形成的二元复合物,阐述了锡与其它金属(M)形成的碳基三元、多元复合物的结构和性能。通过总结近些年对锡碳复合物结构与性能的研究,相信多元复合和多种结构的应用是提高锡-碳复合负极材料的关键。其中,以Sn-Co-C为基础的多元复合负极材料最有可能走向市场应用。  相似文献   

7.
废弃电池中活性材料再利用是目前处理废弃的一次电池既节约又节能的方法.基于此,本工作详细地研究了废弃的Li-AgVO3一次电池作为可充Li-O2电池的再利用.结果显示放电后的Li-AgVO3电池可以作为Li-O2电池被再次激活.在Li-AgVO3电池放电过程中,原位生长在钒氧化物电极上的银纳米颗粒可以进一步有效地催化Li-O2电池中氧还原和氧析出反应(ORR/OER).通过控制Li-AgVO3一次电池的放电深度,可以得到具有不同尺寸和分布状态的Ag纳米颗粒的银/钒氧化物复合电极.将这些不同放电状态的复合电极作为Li-O2电池的空气正极并测试了它们的电化学性能.电化学测试结果表明,放电到2.3 V的复合电极电化学性能最优,比容量高达9000 mAh·gcarbon-1,充放电过电位最低,可稳定循环95周.其优异电化学性能归因于银纳米颗粒合适的尺寸和均匀的分布,明显提高了电极导电能力并为ORR/OER电催化反应提供了丰富的活性位点.  相似文献   

8.
锂离子电池及其相关技术的发展对容量、充放电倍率特性、循环寿命和加工适用性等提出了更高的要求.目前最常用的负极和正极材料与电解液相容性差,充放电过程中结构变化大易剥落导致电池循环稳定性差.鉴于碳纳米管大的长径比、良好的导电性能、优异的力学性能和化学惰性,很适于用作导电剂提升电池性能.本文主要研究了碳纳米管复合材料用作导电剂,并制作成品锂离子电池检测其性能.主要取得了两项实用成果:(1)获得碳纳米管复合导电剂的制备方法,而且采用简单的机械搅拌就可以将复合导电剂进行有效均匀分散,易于进行规模化应用;(2)用碳纳米管复合材料作导电剂,与目前常用的导电剂导电碳黑相比,锂离子电池循环寿命提高一倍以上.  相似文献   

9.
聚苯胺嵌入氧化石墨复合物的合成及表征   总被引:20,自引:0,他引:20  
近年来,聚苯胺类导电高分子嵌入无机片层化合物的报道日趋增加.这些材料中,由于无机/有机的纳米复合,一方面使无机材料的传输性能,如导电性等有极大改善,同时也使该类材料的电化学性能有极大的提高.因此对这类纳米复合材料的研究越来越为广大科研工作者所重视[1~8].作为一种二维的层状化合物,氧化石墨层间大量极性基团的存在虽然赋予了氧化石墨丰富的嵌入化学(Intercalatechemistry)[7~11],但在一定程度上也破坏了原石墨的晶体结构,致使其导电率大大降低(接近非导体).因此,如何以常用的纳米复合技术实现氧化石墨(GO…  相似文献   

10.
聚苯胺/尼龙-11共混导电纤维的形态   总被引:5,自引:0,他引:5  
七十年代后期由于聚乙炔的发现而迅速产生了以共轭高分子为基础的导电高分子学科 ,聚苯胺 (PAn)也于 1 984年被MacDiarmid等重新开发[1 ] .相对于其它共轭高分子而言 ,聚苯胺原料易得、合成简单 ,具有较高的电导率和潜在的溶液、熔融加工可能性 ,同时还有良好的环境稳定性[2~ 5] .以导电高分子为导电剂的导电纤维有其独特的优点 .与颗粒状填料为导电剂不同 ,导电高分子在纺丝拉伸过程中会产生大分子取向 ,形成更多的导电通道 ,纤维的导电性能得到提高 ,导电阈值较小 .因此 ,研究导电组分在材料中的形态分布对研制导电共混复合…  相似文献   

11.
石墨与聚苯乙烯的纳米复合过程研究   总被引:24,自引:3,他引:21  
石墨具有电导率高、化学稳定性好等优点 ,被广泛应用于聚合物 石墨复合导电材料[1~ 3] .石墨作为聚合物导电填料一般以粉末形态居多 .用粉末状石墨填料往往需要较高的填充量才能得到理想的导电性能 .石墨也可以制备成膨胀石墨 ,将它与聚合物复合 ,可以大幅度降低石墨的填充量 .如一般粉末状石墨填料与聚合物复合制备的导电材料其逾渗阀值为 1 5 %~ 2 0 % ,电导率达到 1 0 -4 ~1 0 -7S cm[4 ] ;而若采用膨胀石墨方法 ,逾渗阀值则低于 3% ,电导率可达到 1 0 -2 S cm以上[5~ 7] .Pan等[7] 报道用膨胀石墨与聚合物复合得到纳米复合…  相似文献   

12.
对系列氟化石墨及其作为碱性电池正极添加剂的电化学性能进行了研究,考察了氟化石墨作为电极活性材料及用作添加剂时电池的放电行为以及氟化石墨的氟化程度和电极中氟化石墨的含量对电池的放电性能的影响.研究了MnO2中添加氟化石墨后对电极循环性能的影响,并用XRD比较了几种不同碳材料与氟化石墨的结构特点及MnO2电极放电前后的状态变化,初步探讨了氟化石墨改善二氧化锰电化学性能的作用机制.  相似文献   

13.
对聚苯胺、聚吡啶等共轭聚合物与非导电聚合物材料的复合体系的结构和性能进行了综述。不同方法制备的复合材料在结构和性能上各有特点。一般共轭聚合物与非导电高分子材料相容性差、尤其是低极性高分了。  相似文献   

14.
王东浩  晏鹤凤  龚正良 《电化学》2021,27(4):388-395
使用硫化物固体电解质的全固态锂硫电池由于多硫化物不溶于硫化物固体电解质及硫化物电解质不可燃的特性,得以完全避免穿梭效应并显著提高了电池的安全性能而被认为是极具潜力的下一代储能电池。如何建立并平衡复合正极中离子/电子导电网络且维持复合正极中较高活性物质含量对于全固态锂硫电池至关重要。本文以单质硫为活性物质研究了复合导电添加剂对全固态锂硫电池性能的影响,发现以乙炔黑(AB)为导电碳材料明显优于Super P和Ketjen Black;优化复合正极的组成,发现硫:乙炔黑:固体电解质的质量比为40:20:40时,全固态锂硫电池在室温和60℃下均具有良好的电化学性能。  相似文献   

15.
锂离子电池及其相关技术的发展对容量、充放电倍率特性、循环寿命和加工适用性等提出了更高的要求。目前最常用的负极和正极材料与电解液相容性差,充放电过程中结构变化大易剥落导致电池循环稳定性差。鉴于碳纳米管大的长径比、良好的导电性能、优异的力学性能和化学惰性,很适于用作导电剂提升电池性能。本文主要研究了碳纳米管复合材料用作导电剂,并制作成品锂离子电池检测其性能。主要取得了两项实用成果:(1)获得碳纳米管复合导电剂的制备方法,而且采用简单的机械搅拌就可以将复合导电剂进行有效均匀分散,易于进行规模化应用;(2)用碳纳米管复合材料作导电剂,与目前常用的导电剂导电碳黑相比,锂离子电池循环寿命提高一倍以上。  相似文献   

16.
导电含硫材料/聚苯胺复合物作为镁二次电池的正极材料   总被引:6,自引:0,他引:6  
使用通过简单加热聚丙烯腈(PAN)和硫单质而得到的导电含硫材料(conductive sulfur-containing material, CSM)及其与聚苯胺(PAn)的复合物作为镁二次电池的正极材料. X射线衍射(XRD)和傅立叶红外光谱(FT-IR)测试表明, 导电含硫材料的结构由类似石墨的微晶相及无定形相所组成, 材料骨架为含有S—S键的脱水嘧啶型基质. 该导电含硫材料与聚苯胺复合并掺杂Cu(II)后, 其放电比容量和电化学可逆性大大提高, 放电比容量可达117.3 mAh·g-1, 22次循环后容量保持大约78%(相对于第二次放电容量). 聚苯胺不仅起到电化学催化剂的作用, 同时也是电极活性物质, 并且在分子水平上改善了活性材料的导电性能. 该复合物研究结果为镁二次电池正极材料结构设计的开发提供了新的思路.  相似文献   

17.
张松涛  郑明波  曹洁明  庞欢 《化学进展》2016,28(8):1148-1155
锂硫电池具有高的理论比容量和理论能量密度,被认为是当前最有前景的二次电池体系之一。现阶段锂硫电池的研究工作主要集中于高性能硫正极材料的设计与合成。具有优良的导电性、良好的结构稳定性和多孔结构的纳米碳材料,比如活性碳、介孔碳、超小微孔碳、多级结构多孔碳、空心碳球和空心碳纤维,充分满足了锂硫电池正极材料对碳基体的要求。本文综述了近年来多孔碳/硫复合材料作为硫正极的研究进展。总结了以具有不同结构特征的多孔碳基体负载硫组装的锂硫电池的电化学性能,并分析了不同多孔结构对性能的影响。最后在此基础上,从多孔碳/硫复合正极材料的设计和合成的角度,展望了其未来的发展趋势。  相似文献   

18.
引入一种具有网状结构的导电聚苯胺为催化材料,以导电石墨为填充材料,并对其共混后丝网印刷在FTO导电面上,制备了聚苯胺/石墨复合对电极.主要解决对电极催化活性和导电特性不能有效兼顾,制作工艺复杂的问题.扫描电镜(SEM)结果表示,通过二者简单的共混后,导电聚苯胺的网状结构依然存在,石墨的加入有效填充了聚苯胺之间的空隙,在不影响原来催化活性的基础上增强了对电极的导电性.利用循环伏安(CV)和电化学阻抗(EIS)对复合对电极的催化和导电特性进行研究.对该复合对电极组装成的DSSCs进行光电性能测试,结果表明,当石墨的质量分数达到10%时,基于聚苯胺/石墨复合对电极组装成DSSCs的光电转换效率达到了8.5%,为同等条件下传统Pt电极的123%.  相似文献   

19.
介绍了作者课题组近年来在导电型高分子/碳纳米管(CNT)复合材料研究中若干有代表性的工作,我们从设计多相多组分体系角度出发,通过向单一高分子/CNT体系中添加包括无机粉体、有机高分子和第二种导电介质等第三组分来调控CNT在体系中的分布状态,以期建立提高复合材料的导电性能的技术方法,并研究了添加第三组分引致材料导电性能提...  相似文献   

20.
锂硫电池具有突出的高比能量优势和原料廉价、环境友好等优点,有望成为新一代高能电池体系,但循环性能差是制约其实用化的主要障碍.本文介绍了锂硫电池的国内外发展水平,综述了锂硫电池在正极材料、电解质、负极及体系方面的重要进展,并着重介绍了防化研究院近5年在这一领域的主要成果:制备了硫化导电高分子材料和介孔炭/硫复合材料两类正...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号