首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
锂离子电池及其相关技术的发展对容量、充放电倍率特性、循环寿命和加工适用性等提出了更高的要求.目前最常用的负极和正极材料与电解液相容性差,充放电过程中结构变化大易剥落导致电池循环稳定性差.鉴于碳纳米管大的长径比、良好的导电性能、优异的力学性能和化学惰性,很适于用作导电剂提升电池性能.本文主要研究了碳纳米管复合材料用作导电剂,并制作成品锂离子电池检测其性能.主要取得了两项实用成果:(1)获得碳纳米管复合导电剂的制备方法,而且采用简单的机械搅拌就可以将复合导电剂进行有效均匀分散,易于进行规模化应用;(2)用碳纳米管复合材料作导电剂,与目前常用的导电剂导电碳黑相比,锂离子电池循环寿命提高一倍以上.  相似文献   

2.
采用超声波混合、抽滤的方法把多壁碳纳米管(MWCNTs)和乙炔黑混合制备了锂离子电池用复合导电剂浆料,用扫描电子显微镜(SEM)和恒流充放电测试考察了复合导电剂的结构和其作为导电剂对LiCoO2电极放电比容量的影响。SEM的分析结果表明MWCNTs和乙炔黑实现了纳米层次的均匀混合。复合导电剂悬浮液和浆料分别被用作导电剂制成了两种LiCoO2电极,前一种电极为Cathode A,后一种电极为Cathode B,考察了不同MWCNTs含量时,两种电极0.5C第10次放电比容量的差异。实验结果表明,随着MWCNTs含量的增加,两种电极放电比容量的差值增大,说明低含量MWCNTs的复合导电剂浆料是一种理想的锂离子电池导电剂。  相似文献   

3.
采用超声波混合、抽滤的方法把多壁碳纳米管(MWCNTs)和乙炔黑混合制备了锂离子电池用复合导电剂浆料,用扫描电子显微镜(SEM)和恒流充放电测试考察了复合导电剂的结构和其作为导电剂对LiCoO2电极放电比容量的影响.SEM的分析结果表明MWCNTs和乙炔黑实现了纳米层次的均匀混合.复合导电剂悬浮液和浆料分别被用作导电剂制成了两种LiCoO2电极,前一种电极为Cathode A,后一种电极为Cathode B,考察了不同MWCNTs含量时,两种电极0.5 C第10次放电比容量的差异.实验结果表明,随着MWCNTs含量的增加,两种电极放电比容量的差值增大,说明低含量MWCNTs的复合导电剂浆料是一种理想的锂离子电池导电剂.  相似文献   

4.
应用球磨法于LiFePO4掺杂多壁碳纳米管,制成LiFePO4/MWCNTs复合电极,然后以其组装成锂离子电池.研究不同比例掺杂多壁碳纳米管对复合材料电极电化学性能的影响.XRD、SEM表征及电化学性能测试表明,多壁碳纳米管含量为10%(bymass)的LiFePO4/MWCNTs电极比其它比例的复合电极具有更优良的充放电性能,而且极化小、稳定性强、充放电平台更平稳,导电率更高.在常温0.1C下充放电,首次充、放电比容量分别为139和128.5mAh.g-1,库仑效率达92.4%,循环40次后,电极比容量损失率仅为5.3%.  相似文献   

5.
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能。同时它也是一种具有良好应用前景的锂离子电池电极材料。电极材料的微观结构对其性能有很大影响,利用石墨烯获得具有特殊形貌和微观结构的电极材料,能有效改善材料的各项电化学性能。本文综述了石墨烯及其复合材料在锂离子电池中的应用研究进展。在负极复合材料中,石墨烯不仅可以缓冲材料在充放电过程中的体积效应,还可以形成导电网络提升复合材料的导电性能,提高材料的倍率性能和循环寿命。通过优化复合材料的微观结构,例如夹层结构或石墨烯片层包覆结构,可进一步提高材料的电化学性能。在正极复合材料中,石墨烯形成的连续三维导电网络可有效提高复合材料的电子及离子传输能力。此外,相比于传统导电添加剂,石墨烯导电剂的优势在于能用较少的添加量,达到更加优异的电化学性能。最后对石墨烯复合材料的研究前景进行了展望。  相似文献   

6.
碳纳米管与石墨烯在储能电池中的应用   总被引:2,自引:0,他引:2  
李健  官亦标  傅凯  苏岳锋  包丽颖  吴锋 《化学进展》2014,26(7):1233-1243
当今社会日益增长的能源与环境需求对储能电池技术的发展既是机遇也是严峻的挑战。纳米碳材料如碳纳米管与石墨烯因其优异的导电能力、良好的机械性能以及独特的形貌与结构特征在储能电池技术领域中的应用越来越普遍。本文通过综述近年来碳纳米管与石墨烯分别作为锂离子电池的复合电极材料、负极活性材料、导电添加剂以及新型锂硫电池用复合导电载体的最新应用进展,重点讨论了这两类纳米碳材料的不同应用模式对储能电池容量性能、倍率性能以及循环寿命的影响。同时对目前研究中存在的问题进行了总结,并对未来发展方向,如开发低成本与环境友好的高质量材料合成技术、提升材料的分散能力以有效构筑复合电极结构以及开发新的应用模式等进行了展望。  相似文献   

7.
锂离子电池硅基负极粘结剂发展现状   总被引:2,自引:0,他引:2  
在锂离子电池负极材料的研究中,硅材料以其高达4200 mAh·g-1的理论比容量,成为近年来新能源电池领域的研究热点.但是在锂化/去锂化过程中,硅负极体积变化高达300%,导致快速的容量衰减和较短的循环寿命.目前硅负极改性最有效的方法之一,是通过粘结剂来保持活性物质、导电添加剂和集流体间的接触完整性,减少硅材料在充放电循环过程中体积变化引起的裂化和粉碎,保持硅负极的高容量,提升电池循环性能.基于硅材料作为锂离子电池负极的优异特性,以及目前锂离子电池粘结剂的发展,将针对锂离子电池硅基负极粘结剂做出系统讨论,描述不同粘结剂对电池性能的主要影响,为锂离子电池硅基负极粘结剂的开发和应用提供研究方向.  相似文献   

8.
以聚丙烯酰胺(PAM)为分散剂用微波—固相复合加热技术合成了层状锂离子电池正极材料LiNi0.5C0.5O2。通过扫描电子显微镜(SEM)和X—射线粉末衍射(XRD)分析技术对材料的微观形貌和相结构进行了表征。恒电流充放电循环测试表明:材料的放电比容量高达154mAh/g,且有良好的循环性能。重点利用循环扫描伏安、计时电量和电化学交流阻抗测试技术,对材料在循环前后的电化学性能变化规律进行了探讨。结果表明,经过循环后材料的导电能力以及锂离子扩散能力都有了很大的提高。另外,材料中的锂含量对材料的导电能力也有很大的影响。  相似文献   

9.
聚苯胺理论比容量高,具有优良的导电性能,是理想的超级电容器电极材料。但是,在长期的充放电过程中容易发生体积的收缩与膨胀,循环寿命差。同时,石墨烯由于具有高的理论比表面积,被广泛用作超级电容器电极材料。将聚苯胺与石墨烯复合,利用二者的协同作用,使复合材料具有优异的电化学性能。本文综述了石墨烯/聚苯胺复合材料的制备方法以及近年来在超级电容器领域的主要研究成果,并就其目前存在的主要问题进行了讨论,最后对石墨烯/聚苯胺复合材料的前景进行了展望。  相似文献   

10.
硅基材料由于其高电化学容量是一种非常有发展前途的锂离子电池负极材料,但其在充放电过程中体积变化大、循环寿命差、首次库仑效率低等是阻碍其商业化的主要问题.本文综述了硅在脱嵌锂时晶体结构及表/界面的变化,以及改善其电化学性能方面的研究进展,并阐述其作为锂离子电池负极材料的研究前景.  相似文献   

11.
通过化学气相沉积方法原位制备了氧化硅/碳纳米管(SiO/CNTs)极材料.扫描电镜(SEM)测试结果表明,碳纳米管沉积在氧化硅表面,形成笼状结构,将氧化硅粒子紧密包裹.SiO/CNTs负极材料的初始充放电容量分别为1171和789mAh/g,经过80次充放电循环后,可逆容量为500mAh/g.在循环过程中,碳纳米管和氧化硅之间的紧密接触使得SiO/CNTs复合材料保持了稳定的导电网络,循环性能得以提高.  相似文献   

12.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

13.
石墨烯复合材料因其独特的结构和优异的性质被认为是最有潜力的锂离子电池负极材料之一.石墨烯基复合材料是解决充放电过程中的电极体积变化导致电池的循环性能变差这一问题的有效途径.本文作者综述了多种石墨烯基复合材料作为锂离子电池负极时的电化学性能,并展望了未来的研究方向.  相似文献   

14.
尖晶石型结构的钛酸锂由于具有极高的循环寿命和安全特性,被认为是目前最具应用前景的锂离子电池负极材料之一。但钛酸锂的电子电导率较低,且在充放电循环过程中易产生胀气问题,使其应用受到了极大的限制。将高导电、环境友好、化学和热性能稳定且结构多样的碳材料与钛酸锂形成复合负极材料,可有效提高材料的导电性,同时抑制胀气,对电极材料的性能优化起到非常关键的作用。本文综述了近年来碳材料在钛酸锂负极中的应用与研究进展,深入分析和探讨了碳材料对钛酸锂综合电化学性能的改善方式和改进效果,指出了不同形式的钛酸锂/碳复合材料在制备和应用中需要关注的问题,并对钛酸锂/碳复合材料未来可能的应用方向进行了展望。  相似文献   

15.
以石墨烯和纳米硅颗粒为起始原料,苯胺为单体,植酸为掺杂剂,过硫酸铵为氧化剂(引发剂),通过超声波的作用成功原位合成了具有三明治纳米结构的Si/RGO@PANI锂离子电池负极材料。石墨烯片层与导电聚苯胺与纳米硅颗粒构成的夹心结构可形成有效的导电网络,且具有优异的结构稳定性,能够有效缓解硅在嵌锂/脱锂过程中产生的巨大体积效应,表现出良好的循环性能和倍率性能。电化学性能测试表明,这种Si/RGO@PANI三明治纳米结构复合材料适合作为一种优良的锂离子电池负极材料。  相似文献   

16.
BaFeSi/C复合物作为锂离子电池负极材料的研究   总被引:1,自引:0,他引:1  
冯瑞香  董华  艾新平  杨汉西 《电化学》2004,10(4):391-396
采用机械球磨法制备BaFeSi/C复合物,并考察了其作为锂离子电池负极材料的电化学性能.结果表明,这种复合材料具有较高的初始放电容量、合适的充放电平台和良好的循环可逆性.XRD和XPS研究证明:BaFeSi/C复合物循环性能的提高主要源于惰性导电组分FeSi2、BaSi2和外层石墨骨架的协同作用,它们的存在不仅有效地缓冲了活性组分硅的体积变化,同时在很大程度上增强了复合材料的电子导电性和离子导电性.  相似文献   

17.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

18.
锂离子电池用硅/碳复合负极材料   总被引:11,自引:0,他引:11  
王保峰  杨军  解晶莹  王可  文钟晟  喻献国 《化学学报》2003,61(10):1572-1576
以聚氯乙烯(PVC)、纳米硅粉和小粒径的人造石墨为前驱物,利用高温热解 反应,使纳米的硅和石墨微粒高度均匀地分散在PVC热解产生的碳中,形成一种新 型硅碳复合嵌锂材料,电化学测试表明:该复合材料首次充放电效率约为84%。可 逆比窝容量500mAh·g~(-1)左右,30次循环后容量维持在90%以上。另外,该复 合材料充放电平台经目前锂离子电池广泛采用的中间相碳微球(CMS)高0.15V左右 ,这有助于提高电池的充电倍率性能和操作安全性。  相似文献   

19.
通过溶胶-凝胶法制备了Li2FeSiO4@C/CNTs(LFS@C/CNTs)纳米复合材料,其中三嵌段共聚物P123用作结构导向剂和碳源,碳纳米管作为导电线提高材料的导电性。LFS@C/CNTs不仅具有海绵状纳米孔,能够与电解液充分接触改善锂离子的传输路径,同时由非晶碳和碳纳米管构成的三维桥联导电网络利于电子的快速传递,提高了材料大电流充放电能力和循环稳定性。复合后的LFS@C/CNTs的高倍率性能相比LFS@C明显提高, 当CNTs的掺量为4%,电压窗口为1.5~4.5 V,0.1C电流密度下放电比容量为182 mAh·g-1。在10C经70次循环后该材料的放电比容量能保持在117 mAh·g-1,是LFS@C放电比容量(55 mAh·g-1)的两倍。  相似文献   

20.
碳酸钾或碳酸钠颗粒作催化剂基底,采用化学气相沉积(CVD)制得类似于石墨烯的层状碳材料,并经原位化学沉积可得层状碳/硫酸铅复合材料. 用X射线衍射(XRD)、热重分析、扫描电镜(SEM)和透射电镜(TEM)分析与测试样品. 结果表明,层状碳为无定型碳层,复合材料为无定型碳层与附着其上的细小硫酸铅颗粒的复合. 上述层状碳和复合材料作为负极添加剂应用于铅酸电池中,测试了电池电化学性能. 结果表明,电池大电流放电比容量和循环寿命均明显提高. 通过电化学交流阻抗谱图(EIS)、充放电曲线和负极失效后的SEM照片证实,加入添加剂能够降低反应阻抗、减小极化及有效抑制极板硫酸盐化.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号