首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 212 毫秒
1.
质谱成像(Mass spectrometry imaging,MSI)作为一种新型的分子成像技术,具有无需标记、无需复杂样品前处理、高通量等优点,可实现脂类、代谢物等的直接分析,并可获得组织切片中物质的空间分布信息,已成为生物、医学等领域研究的有力工具。离子化技术是质谱成像的关键和核心,新型质谱成像离子化技术的不断涌现,推动了质谱成像技术在肿瘤研究中的应用。该文着重介绍了当前主要质谱成像技术的原理及特点,并对其在肿瘤的病理诊断、标志物、药物研究等方面的应用进行评述,为质谱成像技术在肿瘤方面的研究提供参考。  相似文献   

2.
基于质谱成像(MSI)技术的空间分辨代谢组学方法已经成为生物组织学、肿瘤分子病理诊断和新药药效毒理研究的有力工具。该研究采用敞开式空气动力辅助解吸电喷雾离子化(AFADESI)技术,开发了一种正负离子切换扫描的质谱成像方法。该方法在离子化过程中无需施加高电压,既提高了敞开式离子化质谱成像的操作安全性,还可将生物组织切片,尤其是较大面积的整体动物组织切片中的各类不同性质的内源性代谢物进行高效率解吸和离子化,同时获得多胺、氨基酸、磷脂(正离子模式易电离)和核苷、磷脂酰甘油(负离子模式易电离)等内源性代谢物的空间分布特征。通过正负离子化的同时扫描和质谱成像分析,节省了数据采集的时间和样本切片的数量,扩展了代谢物的覆盖范围,使得一次实验可以成像检出更多种类的代谢物。因此,该方法在整体动物各组织器官的空间分辨代谢组学研究中具有优势,有望从整体动物体内代谢水平深刻理解与生理、病理和药理相关的分子空间分布特征及分子机制。  相似文献   

3.
赵超  蔡宗苇 《化学进展》2021,33(4):503-511
生物体多器官的空间异质性导致环境污染物在生物体内的毒性分子机制错综复杂。基于传统化学和生物分析的环境毒理学研究,通常将研究对象看作“均一”整体,无法从空间上准确定位污染物及其代谢。以质谱成像和组学分析为基础的技术,同时对污染物、污染物代谢活化途径及其诱导的生物分子进行定性、定量和空间分析,从而确定污染物迁移、生物学效应及其毒性作用的靶器官,是目前最有前景的分析方法之一。本文综述了质谱成像和组学研究策略和特征,介绍了本课题组在相关领域取得的研究进展。同时简单展望了单细胞质谱成像、微流控芯片-质谱成像联合策略等先进技术在环境毒理研究中的潜在应用。  相似文献   

4.
脑卒中是世界上主要的致死和致残的原因之一,缺血性脑卒中(IS)约占所有脑卒中案例的87%。由于IS存在黄金3或4.5 h的治疗窗,其早期筛查和快速诊断显得尤为重要。分子标志物的发现为IS的预测和诊断提供了新的思路。质谱技术可以快速灵敏地检测生物医学样本中的各种化合物,已被广泛应用于IS生物标志物的发现。该综述总结和讨论了质谱在IS标志物(特别是蛋白和小分子代谢物标志物)发现中的应用及其最新进展。  相似文献   

5.
周鹏  蔡宗苇  赵超 《化学进展》2024,(2):159-166
作为全球公共卫生事件,恶性肿瘤严重影响人类健康、寿命和生活质量。肿瘤的发生发展经历了极其复杂的过程,表现出高度的时空异质性,影响其转移和耐药。为探寻这种异质性,多种临床影像技术和空间组学技术得以飞速发展。其中,临床影像技术准确率高但无法提供高通量的生物分子信息。空间组学技术可以获得标本的多种生物学特征,包括基因、蛋白和代谢等,但无法提供在体信息。将临床影像和空间组学技术相结合,可以优势互补,在临床和基础科学研究中具有较大应用前景,对于精确解析肿瘤的时空异质性和鉴别肿瘤分子分型、开展肿瘤精准诊断和发展进程预测等研究具有重要的推进作用。本文对该技术方法和特征进行了评述并展望了其发展趋势。  相似文献   

6.
代谢组学主要研究生物体内小分子代谢物种类和数量的变化,能够准确的反映生命体终端和表型信息。尽管代谢组学技术进步主要得益于分析平台的发展,但是生物样本的制备作为其先决条件,近年来受到广泛的关注,尤其在质谱领域,而动物组织代谢组学因其制备策略的局限性正面临着在体液分析中未遇到的挑战,如提取流程非常耗时,有机溶剂大量使用等。本文结合近几年国内外研究人员发表的相关文献及大量的实验工作,综述了代谢组学组织样本的制备策略及发展方向,为进一步使用代谢组学研究动物生命科学提供参考。  相似文献   

7.
质谱成像是近年来发展迅速的新型分子成像技术,在生物医药领域受到越来越广泛的关注。本研究采用敞开式的空气动力辅助离子化-高分辨质谱技术,建立了大鼠肾脏组织中内源性代谢物的质谱成像分析方法(AFAI-MSI)。大鼠肾脏组织经冷冻处理后制备冷冻组织切片,以乙腈-异丙醇-水(4∶4∶2,V/V)为喷雾溶剂,流速为5μL/min,喷雾气(N_2)压力为0.6 MPa,空气辅助气流速为45 L/min,质谱扫描范围为70~1000 Da,质量分辨率为70000。采用正离子检测模式的AFAI-MSI方法对大鼠肾脏组织切片进行了成像分析,结果发现有机胺、糖、神经递质、维生素、多肽、有机酸、甘油磷脂、鞘脂、甘油脂、固醇酯等38种不同类型、其含量差异达4个数量级的内源性代谢物,并观察到这些代谢物在肾脏中呈组织特异性分布,直观地呈现了与肾脏渗透压梯度形成有关的胆碱、乙酰胆碱、甜菜碱、磷酸胆碱和甘油磷酸胆碱等多种小分子代谢物的皮质-髓质轴向分布特征。上述结果表明,基于超高分辨质谱的AFAI-MSI分析方法无需样品预处理,灵敏度高,代谢物覆盖范围宽,可同时获取多种小分子代谢物的结构、含量及其空间分布信息,有望为肾脏中内源性代谢物的原位表征和代谢调控机制研究提供一种新的分析方法。  相似文献   

8.
复杂混合物体系中化合物类型多样,理化性质各异,对其组成成分进行定性定量分析一直是分析化学研究的热点问题.液相色谱与质谱联用(liquid chromatography-mass spectroscopy,LC-MS),尤其是超高效液相色谱(ultra-high performance liquid chromatography,UPLC)结合高分辨质谱(high resolution mass spectrometry,HRMS)是复杂样品分析的有力工具.UPLC能够极大程度提高色谱分离能力和效率,为复杂混合物中各组分的有效分离提供保证;HRMS能够提供高精确的分子质量,提高定性定量分析的可靠性和准确性.本文综述了LC-MS技术在分析典型的复杂混合物体系(尿液、血液、细胞代谢物及天然产物提取物)中小分子化合物组分及含量中的应用,主要从样品制备、数据采集、数据(前)处理、目标化合物的定性定量分析及多样本多变量分析(代谢组学分析)用于差异代谢物(生物标志物)的发现等方面展开,并对LC-MS技术用于复杂混合物样品分析当前存在的问题及未来的发展进行了总结和展望  相似文献   

9.
药物小分子与生物体内靶分子之间的相互作用,是药物发挥其药理活性的重要途径之一。因此,高通量地筛选出能够与生物靶分子相互作用且具有生物活性的药物小分子,对于新药开发研究具有重要的理论意义和实际应用价值。超滤质谱技术是超滤装置与质谱技术结合后形成的一种新的分析方法,它能够在液相条件下快速地识别并鉴定出与生物靶分子结合的药物小分子配体。与其它分析方法相比,超滤质谱技术具有快速、灵敏、高通量的特点,因而被广泛应用于研究药物小分子和生物靶分子相互作用。本文综述了超滤质谱技术的原理、特点和实验操作中的一些关键问题。重点介绍了超滤质谱技术在药物小分子与生物靶分子相互作用研究中的应用进展,并对其未来的发展方向进行了展望。  相似文献   

10.
采用超高压液相色谱-二维线性离子阱结合静电场轨道阱组合式高分辨质谱联用技术(Accela U HPLC/LTQ Orbitrap XL),建立了人毛发中吗啡、O~6-单乙酰吗啡、可待因、乙酰可待因、氯胺酮、去甲氯胺酮和美沙酮毒品及代谢物快速筛查方法。取毛发样品经表层清洗后冷冻研磨粉碎,置于硼酸盐缓冲液(pH 9.2)中超声90 min,离心取上清液,用Oasis HLB柱固相萃取制备。通过静电场轨道阱全扫描得到毒品及其代谢物的精确相对分子质量,同时进行7种毒品及其代谢物的快速筛查。高分辨率质谱可有效去除毛发基质干扰,毒品及其代谢物筛查检出限在0.001~0.02 ng/mg,在0.05~50 ng/mg范围内存在良好线性关系(r>0.9975);本方法平均加标回收率为76.1%~109.6%;日内及日间精密度RSD≤14.9%。本方法灵敏度高,样品制备简便,适用于常见毒品的快速筛查。  相似文献   

11.
脂质组学概念自2003年被提出以来,其已成为研究生物体、组织或细胞中脂质的结构、功能及代谢途径的一门学科。脂质的种类众多,同时结构非常复杂,脂质的分析充满了困难和挑战。基质辅助激光解吸电离质谱成像(MALDI MSI)分析技术不仅可以进行物质鉴定,而且可对被分析物进行空间分布成像,近年来,该技术广泛地应用于脂质组学的研究。该文介绍了MALDI MSI在脂质组学研究中的样品处理、基质喷涂及应用方面的研究进展,并就目前存在的问题及解决方案进行了探讨,以期扩展MALDI MSI的应用范围。  相似文献   

12.
Matrix-enhanced surface-assisted laser desorption ionization mass spectrometry imaging (ME-SALDI MSI) has been previously demonstrated as a viable approach to improving MS imaging sensitivity. We describe here the employment of ionic matrices to replace conventional MALDI matrices as the coating layer with the aims of reducing analyte redistribution during sample preparation and improving matrix vacuum stability during imaging. In this study, CHCA/ANI (α-cyano-4-hydroxycinnamic acid/aniline) was deposited atop tissue samples through sublimation to eliminate redistribution of analytes of interest on the tissue surface. The resulting film was visually homogeneous under an optical microscope. Excellent vacuum stability of the ionic matrix was quantitatively compared with the conventional matrix. The subsequently improved ionization efficiency of the analytes over traditional MALDI was demonstrated. The benefits of using the ionic matrix in MS imaging were apparent in the analysis of garlic tissue sections in the ME-SALDI MSI mode.  相似文献   

13.
Imaging mass spectrometry provides both chemical information and the spatial distribution of each analyte detected. Here it is demonstrated how imaging mass spectrometry of tissue at subcellular resolution can be achieved by combining the high spatial resolution of secondary ion mass spectrometry (SIMS) with the sample preparation protocols of matrix-assisted laser desorption/ionization (MALDI). Despite mechanistic differences and sampling 10(5) times less material, matrix-enhanced (ME)-SIMS of tissue samples yields similar results to MALDI (up to m/z 2500), in agreement with previous studies on standard compounds. In this regard ME-SIMS represents an attractive alternative to polyatomic primary ions for increasing the molecular ion yield. ME-SIMS of whole organs and thin sections of the cerebral ganglia of Lymnaea stagnalis demonstrate the advantages of ME-SIMS for chemical imaging mass spectrometry. Subcellular distributions of cellular analytes are clearly obtained, and the matrix provides an in situ height map of the tissue, allowing the user to identify rapidly regions prone to topographical artifacts and to deconvolute topographical losses in mass resolution and signal-to-noise ratio.  相似文献   

14.
Mass spectrometry imaging (MSI) of volatile metabolites is challenging, especially in matrix-assisted laser desorption/ionization (MALDI). Most MALDI ion sources operate in vacuum, which leads to the vaporization of volatile metabolites during analysis. In addition, tissue samples are often dried during sample preparation, leading to the loss of volatile metabolites even for other MSI techniques. On-tissue chemical derivatization can dramatically reduce the volatility of analytes. Herein, a derivatization method is proposed utilizing N,N,N-trimethyl-2-(piperazin-1-yl)ethan-1-aminium iodide to chemically modify short-chain fatty acids in chicken cecum, ileum, and jejunum tissue sections before sample preparation for MSI visualization.  相似文献   

15.
The combination of ultrahigh-resolution mass spectrometry imaging (UHRMSI) and ultrahigh-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was used for the identification and the spatial localization of atorvastatin (AT) and its metabolites in rat tissues. Ultrahigh-resolution and high mass accuracy measurements on a matrix-assisted laser desorption/ionization (MALDI)-Orbitrap mass spectrometer allowed better detection of desired analytes in the background of matrix and endogenous compounds. Tandem mass spectra were also used to confirm the identification of detected metabolites in complex matrices. The optimization of sample preparation before imaging experiments included the tissue cryogenic sectioning (thickness 20 μm), the transfer to stainless steel or glass slide, and the selection of suitable matrix and its homogenous deposition on the tissue slice. Thirteen matrices typically used for small molecule analysis, e.g., 2,5-dihydroxybenzoic acid (DHB), 1,5-diaminonaphthalene (DAN), 9-aminoacridine (AA), etc., were investigated for the studied drug and its metabolite detection efficiency in both polarity modes. Particular matrices were scored based on the strength of extracted ion current (EIC), relative ratio of AT molecular adducts, and fragment ions. The matrix deposition on the tissue for the most suitable matrices was done by sublimation to obtain the small crystal size and to avoid local variations in the ionization efficiency. UHPLC/MS profiling of drug metabolites in adjacent tissue slices with the previously optimized extraction was performed in parallel to mass spectrometry imaging (MSI) measurements to obtain more detailed information on metabolites in addition to the spatial information from MSI. The quantitation of atorvastatin in rat liver, serum, and feces was also performed.
Figure
?  相似文献   

16.
The development of reliable sample preparation methods has been critical to the success of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry experiments. Good MALDI sample preparation for polymers involves choosing the solvent system, the matrix, and the ionization agent correctly, and combining them in a manner that will lead to a sample that will produce the desired ions. The vast diversity of chemistry available in industrial polymers has challenged our ability to design reliable sample preparation methods. In the experiments reported here, we show that matrix-enhanced secondary ion mass spectrometry (MESIMS) is an effective analytical technique to explore sample segregation in solid phase MALDI samples. Qualitative comparison of MESIMS and MALDI results for polymer samples prepared with multiple matrices aids our investigation of the solid-phase solubility of a variety of low molecular weight polymer materials. Including the solid-phase solubility with the liquid-phase solubility of the polymer samples and the matrices enables the construction of a relative solubility chart, which shows the best solubility matches between the polymer and matrix materials for MALDI experiments.  相似文献   

17.
Matrix-assisted laser desorption/ionization - imaging mass spectrometry is an alternative tool, which can be implemented in order to obtain and visualize the “omic” signature of tissue samples. Its application to clinical study enables simultaneous imaging-based morphological observations and mass spectrometry analysis. Application of fully informative material like tissue allows obtaining the complex and unique profile of analyzed samples. This knowledge leads to diagnosing disease, studying the mechanism of cancer development, selecting the potential biomarkers as well as correlating obtained images with prognosis. Nevertheless, it is worth noticing that this method is found to be objective but the result of the analysis is mainly influenced by the sample preparation protocol, including the collection of biological material, its preservation, and processing. However, the application of this approach requires a special sample preparation procedure. The main goal of the study is to present the current knowledge on the clinical application of matrix-assisted laser desorption/ionization with imaging mass spectrometry in cancer research, with particular emphasis on the sample preparation step. For this purpose, several protocols based on cryosections and formalin-fixed paraffin-embedded tissue were compiled and compared, taking into account the measured metabolites of potential diagnostic importance for a given type of cancer.  相似文献   

18.
Mass spectrometry imaging (MSI) is a comprehensive tool for the analysis of a wide range of biomolecules. The mainstream method for molecular MSI is matrix‐assisted laser desorption ionization, however, the presence of a matrix results in spectral interferences and the suppression of some analyte ions. Herein we demonstrate a new matrix‐free MSI technique using nanophotonic ionization based on laser desorption ionization (LDI) from a highly uniform silicon nanopost array (NAPA). In mouse brain and kidney tissue sections, the distributions of over 80 putatively annotated molecular species are determined with 40 μm spatial resolution. Furthermore, NAPA‐LDI‐MS is used to selectively analyze metabolites and lipids from sparsely distributed algal cells and the lamellipodia of human hepatocytes. Our results open the door for matrix‐free MSI of tissue sections and small cell populations by nanophotonic ionization.  相似文献   

19.
Automated matrix deposition for matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is crucial for producing reproducible analyte ion signals. Here we report an innovative method employing an automated immersion apparatus, which enables a robust matrix deposition within 5 minutes and with scalable throughput by using MAPS matrix and non‐polar solvents. MSI results received from mouse heart and rat brain tissues were qualitatively similar to those from nozzle sprayed samples with respect to peak number and quality of the ion images. Overall, the immersion‐method enables a fast and careful matrix deposition and has the future potential for implementation in clinical tissue diagnostics.  相似文献   

20.
Small molecule analysis by MALDI mass spectrometry   总被引:3,自引:0,他引:3  
This review focuses on the application of matrix assisted laser desorption/ionization (MALDI) mass spectrometry to the characterization of molecules in the low mass range (<1500 Da). Despite its reputation to the contrary, MALDI is a powerful technique to provide both qualitative and quantitative determination of low molecular weight compounds. Several approaches to minimize interference via sample preparation and matrix selection are discussed, as well as coupling of MALDI to liquid and planar chromatographic techniques to extend its range of applicability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号