首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of Cu(II) and Cu(II)-EDTA onto TiO2 with variations in the pH, concentration, and molar ratio of Cu(II) to EDTA has been studied. The adsorption of Cu(II) and Cu(II)-EDTA onto TiO2 showed typical cationic- and anionic-type behavior, respectively. The removal of Cu(II) in an EDTA-excess system was less than that in an equimolar Cu(II)/EDTA system due to the competitive adsorption of EDTA and Cu(II)-EDTA onto the TiO2. The removal of Cu(II) was favorable at low pH for both the equimolar and EDTA-excess systems, while significant Cu(II) removal was observed over the entire pH range in a copper-excess system. For model predictions, the MINTEQA2 program employing an inner-sphere complexation and a diffuse layer model was used; the surface complexes used included Ti(OH2)OCu+, Ti(OH)EDTAH2-(2), and Ti(OH)EDTACu2-.  相似文献   

2.
Illite samples from Fithian, IL were purified and saturated with Na(+) ions. The acid-base surface chemistry of the Na-saturated illite was studied by potentiometric titration experiments with 0.1, 0.01, and 0.001 M NaNO(3) solutions as the background electrolyte. Results showed that the titration curves obtained at different ionic strengths did not intersect in the studied pH range. The adsorption of Cd(II), Cu(II), Ni(II), Pb(II), and Zn(II) onto illite was investigated as a function of pH and ionic strength by batch adsorption experiments. Two distinct mechanisms of metal adsorption were found from the experimental results: nonspecific ion-exchange reactions at lower pH values on the basal surfaces and 'frayed edges' and specific adsorption at higher pH values on the mineral edges. Ionic strength had a greater effect on the ion-exchange reactions. The binding constants for the five heavy metals onto illite were determined using the least-square fitting computer program FITEQL. Linear free energy relationships were found between the surface binding constants and the first hydrolysis constants of the metals.  相似文献   

3.
Poly[(2-dimethylamino)ethyl methacrylate] (PDEM) is completely charged, partially charged, and uncharged at pH 4, 7, and 10, respectively. We have investigated the salt effects on the conformational change of PDEM chains grafted on a surface at different pH by using quartz crystal microbalance with dissipation (QCM-D) and surface plasmon resonance (SPR). The changes in frequency (Δf) and dissipation (ΔD) in QCM-D measurements demonstrate that the conformational behavior is governed by counterion condensation at pH 4 and 7 but by nonelectrostatic anion adsorption at pH 10. The addition of Na(2)SO(4) induces more collapse of the grafted layer than that of NaClO(3) at pH 4 and 7. However, they have a similar effect at pH 10. The shift of resonance unit (ΔRU) in SPR measurements reflects the changes of layer thickness and layer refractive index. At pH 4, ΔRU decreases with ionic strength in the presence of Na(2)SO(4), indicating the decrease of layer thickness or the chain collapse. However, ΔRU exhibits a minimum as the ionic strength increases in the case of NaClO(3). This is because the effects of the layer thickness and refractive index are dominant in the low and high ionic strength regimes, respectively. At pH 7, ΔRU slightly varies with ionic strength in the case of either Na(2)SO(4) or NaClO(3), indicating that the effects of the layer thickness and refractive index are comparable during the layer collapse. At pH 10, the shift in ΔRU suggests that the nonelectrostatic anion adsorption governs the conformational behavior of the PDEM chains.  相似文献   

4.
Amberlite XAD-2 has been functionalized by coupling it to quinalizarin [1,2,5,8-tetrahydroxyanthraquinone] by means of an -N = N- spacer. Elemental analysis, thermogravimetric analysis, and infrared spectra were used to characterize the resulting new polymer matrix. The matrix has been used to preconcentrate Cu(II), Cd(II), Co(II), Pb(II), Zn(II), and Mn(II) before their determination by flame atomic absorption spectrometry (FAAS). UO2(II) has been preconcentrated for fluorimetric determination. The optimum pH values for maximum adsorption of the metals are between 5.0 and 7.0. All these metal ions are desorbed (recovery 91-99%) with 4 mol L(-1) HNO3. The adsorptive capacity of the resin was found to be in the range 0.94-5.28 mg metal g(-1) resin and loading half-life (t1/2) between 5.3 and 15.0 min. The effects of NaF, NaCl, NaNO3, Na2SO4, Na3PO4, Ca(II), and Mg(II) on the adsorption of these metal ions (0.2 microg mL(-1)) are reported. The lower limits of detection for these metal ions are between 1 and 15.0 microg L(-1). After enrichment on this matrix flame AAS has been used to determine these metal ions (except the uranyl ion) in river water samples (RSD < or = 6.5%); fluorimetry was used to determine uranyl ion in well water samples (RSD < or = 6.3%). Cobalt from pharmaceutical vitamin tablets was preconcentrated by use of this chelating resin and estimated by FAAS (RSD approximately 4%).  相似文献   

5.
Isotherms of adsorption of Cu(II) and Ni(II) onto solid Azraq humic acid (AZHA) were studied at different pH (2.0-3.7) values and 0.1 M NaClO4 ionic strength. The Langmuir monolayer adsorption capacity was found to range from 0.1 to 1.0 mmol metal ion/g AZHA, where Cu(II) has higher adsorptivity than Ni(II). The previously reported NICA-Donnan parameters for sorption of Cu(II) on HA fit the amount of Cu(bound) determined in the present study at pH 3.7 but underestimates those at pH values of 3.0, 2.4, and 2.0. The contribution of low affinity sites to binding of metal ions increases with decreasing pH and increasing metal ion loading. The aggregation of HA, which is facilitated by decreasing pH and increasing metal loading, may increase the ability of low-affinity sites to encapsulate metal ions. The binding of Ni(II) to HA exhibits less heterogeneity and less multidentism than that of Cu(II). AZHA loaded with Cu(II) and Ni(II) was found to be insoluble in water with no measurable amount of desorbed metal ions.  相似文献   

6.
Goswami A  Singh AK 《Talanta》2002,58(4):669-678
A new chelating matrix has been prepared by immobilizing 1,8-dihydroxyanthraquinone (DHAQ) on silica gel modified with (3-aminopropyl)triethoxysilane. After characterizing the matrix with thermogravimetric analysis (TGA), cross polarization magic angle spinning (CPMAS) NMR and diffuse reflectance infrared fourier transformation (DRIFT) spectroscopy, it has been used to preconcentrate Pb(II), Cd(II) and Zn(II) prior to their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.0-7.5, 7.0-8.0 and 6.0-8.0 for Pb, Zn, and Cd, respectively. All the metal ions can be desorbed with 2 mol l(-1) HCl/HNO(3). The sorption capacity of the matrix has been found to be 76.0, 180.0 and 70.2 mumol g(-1) for Pb, Zn and Cd, respectively, with the preconcentration factor of approximately 200. The limits upto which electrolytes NaNO(3), NaCl, NaBr, Na(2)SO(4), Na(3)PO(4) sodium citrate, EDTA, glycine and humic acid and cations Ca(II), Mg(II), Cu(II), Co(II), Ni(II), Mn(II) Al(III), Cr(III) and Fe(III) can co-exist with the metal ions during their sorption without any adverse effect are reported. The lowest concentration of metal ions for quantitative recovery is 5.0 ng ml(-1) The simultaneous enrichment and determination of all the metals is possible if total load of metal ions is less than sorption capacity. The flame AAS was used to determine these metal ions in underground, tap and river water samples (relative standard deviation (R.S.D.)相似文献   

7.
Jain VK  Sait SS  Shrivastav P  Agrawal YK 《Talanta》1997,45(2):397-404
A very stable chelating resin matrix was synthesized by covalently linking o-vanillinthiosemicarbazone (oVTSC) with the benzene ring of the polystyrene-divinylbenzene resin Amberlite XAD-2 through a -NN- group. The resin was used successfully for the separation and preconcentration of copper(II), zinc(II) and lead(II) prior to their determination by atomic absorption spectrophotometry. The total sorption capacity of the resin was 850, 1500 and 2000 mug g(-1) of the resin for Cu(II), Zn(II) and Pb(II), respectively. For the quantitative sorption and recovery of Cu(II), Zn(II) and Pb(II), the optimum pH and eluants were pH 2.5-4.0 and 4 M HCl or 2 M HNO(3) for Cu(II), pH 5.5-6.5 and 1.0-2.0 M HCl for Zn(II) and pH 6.0-7.5 and 3 M HCl or 1 M HNO(3) for Pb(II). Both, the uptake and stripping of these metal ions were fairly rapid, indicating a better accessibility of the chelating sites. The t (1 2 ) values for Cu(II), Zn(II) and Pb(II) were also determined. Limit of tolerance of some electrolytes like NaCl, NaF, NaNO(3), Na(2)SO(4) and Na(3)PO(4) have been reported. The preconcentration factor for Cu(II), Zn(II) and Pb(II) was 90, 140 and 100 respectively. The method was applied for the determination of Cu(II), Zn(II) and Pb(II) in the water samples collected from Sabarmati river, Ahmedabad, India.  相似文献   

8.
As discrete particles and/or as surface coatings on other minerals in natural systems, aluminum hydroxides are efficient sinks for Hg(II). The Hg(II) adsorption on gibbsite was determined as a function of temperature (T), pH, and the type of background electrolytes, i.e., NaNO(3), NaClO(4), and NaCl. When the equilibration time t(E) approximately 2 h, the Hg(II) retention on gibbsite was found to be a reversible process, which was ascribed to adsorption. The Hg(II) adsorption capacity, i.e., Gamma(Hg(II)), varied with the type of electrolyte used in accordance with the following order: Gamma(NO(3))(Hg(II)) > or = Gamma(ClO(4))(Hg(II)) > or = Gamma(Cl)(Hg(II)). In all cases, the estimated thermodynamic parameters showed that the Hg(II) adsorption on gibbsite was endothermic and spontaneous. The Hg(II) adsorption data were quantified with the Langmuir or Hill, and Dublin-Radushkevick (DR), isotherms at all temperatures and acidity levels examined. Always, the Hg(II) adsorption data were in compliance with the DR model. However, the Hg(II) adsorption in NaNO(3) or NaClO(4) was interpreted in terms of the Langmuir model. When NaCl was used as electrolyte, the Hg(II) adsorption was modeled well with the Hill equation. The mean free energy values calculated from DR plots concluded that Hg(II)-gibbsite interactions are a result of chemical bonding.  相似文献   

9.
The Cu(SO(3))(4)(7-) anion, which consists of a tetrahedrally coordinated Cu(I) centre coordinated to four sulfur atoms, is able to act as a multidentate ligand in discrete and infinite supramolecular species. The slow oxidation of an aqueous solution of Na(7)Cu(SO(3))(4) yields a mixed oxidation state, 2D network of composition Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O. The addition of Cu(II) and 2,2'-bipyridine to an aqueous Na(7)Cu(SO(3))(4) solution leads to the formation of a pentanuclear complex of composition {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(+); a combination of hydrogen bonding and π-π stacking interactions leads to the generation of infinite parallel channels that are occupied by disordered nitrate anions and water molecules. A pair of Cu(SO(3))(4)(7-) anions each act as a tridentate ligand towards a single Mn(II) centre when Mn(II) ions are combined with an excess of Cu(SO(3))(4)(7-). An anionic pentanuclear complex of composition {[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)} is formed when Fe(II) is added to a Cu(+)/SO(3)(2-) solution. Hydrated ferrous [Fe(H(2)O)(6)(2+)] and sodium ions act as counterions for the complexes and are responsible for the formation of an extensive hydrogen bond network within the crystal. Magnetic susceptibility studies over the temperature range 2-300 K show that weak ferromagnetic coupling occurs within the Cu(II) containing chains of Na(5){[Cu(II)(H(2)O)][Cu(I)(SO(3))(4)]}·6H(2)O, while zero coupling exists in the pentanuclear cluster {[Cu(II)(H(2)O)(bipy)](4)[Cu(I)(SO(3))(4)]}(NO(3))·H(2)O. Weak Mn(II)-O-S-O-Mn(II) antiferromagnetic coupling occurs in Na(H(2)O)(6){[Cu(I)(SO(3))(4)][Mn(II)(H(2)O)(2)](3)}, the latter formed when Mn was in excess during synthesis. The compound, Na(3)(H(2)O)(6)[Fe(II)(H(2)O)(6)](2){[Cu(I)(SO(3))(4)](2)[Fe(III)(H(2)O)](3)(O)}·H(2)O, contained trace magnetic impurities that affected the expected magnetic behaviour.  相似文献   

10.
A chelating matrix prepared by immobilizing 1,8-dihydroxyanthraquinone on silica gel modified with 3-aminopropyltriethoxysilane has been characterized by use of cross-polarization magic angle spinning (CPMAS) NMR, diffuse reflectance infrared Fourier transformation (DRIFT) spectroscopy, and thermogravimetric analysis and used to preconcentrate Fe(III), Co(II), Ni(II), and Cu(II) before their determination by flame atomic absorption spectrometry. The optimum pH ranges for quantitative sorption are 6.5-8.0, 6.0-7.0, 6.0-8.0, and 7.0-8.5 for Cu, Fe, Co, and Ni, respectively. All the metal ions can be desorbed with 2 mol L(-1) HCl or HNO3. The sorption capacity ( micromol g(-1) matrix) and preconcentration factor were 226.6, 250; 365.6, 300; 101.8, 150; and 109.0, 250 for Cu, Fe, Co, and Ni, respectively. The lowest concentration for quantitative recovery was 4.0, 3.3, 6.6, and 4.0 ng mL(-1), respectively for the four metal ions. The limits up to which electrolytes NaNO3, NaCl, NaBr, Na2SO4, and Na3PO4 and cations Ca(II) and Mg(II) can coexist with the four metal ions during their sorption without adverse effect are reported. The simultaneous enrichment and determination of all the four metals is possible if the total load of metal ions is less than the sorption capacity. Flame AAS was used to determine the metal ions in underground, tap, and river water samples (RSD相似文献   

11.
Porto R  Furia E 《Annali di chimica》2007,97(3-4):187-198
The complexation of the Cu2+ ion with 2-Hydroxybenzamide (salicylamide, HL) has been studied, at 25 degrees C, by potentiometric measurements with a glass electrode in NaCIO4 media for ionic strength ranging from 0.5 to 3 mol/dm3. The data are consistent with the formation of the complexes CuH(-1)(HL)+, CuH(-2)(HL)2, Cu2H(-2)(HL)2(2+) and CuH(-2)(HL). The minor species, Cu2H(-2)(HL)2(2+) and CuH(-2)(HL), amount to at least 20% of the total copper. Elaboration of the data according to the Specific Interaction Theory yields the constants valid in the infinite dilution reference state: [formulas: see text] and the interaction coefficients (kg/mol) of complex species with medium ions: b(L-,Na+) = 0.11 +/- 0.03; b(CuH(-1)(HL)+,NaClO4) = 0.17 +/- 0.05; b(CuH(-2)(HL)2,NaClO4) = 0.11 +/- 0.05; b(Cu2H(-2)(HL)2(2+),NaClO4) = 0.2(7) +/- 0.1; b(CuH(-2)(HL),NaClO4) = -0.0(3) +/- 0.1.  相似文献   

12.
Tewari PK  Singh AK 《Talanta》2001,53(4):823-833
A new chelating resin is prepared by coupling Amberlite XAD-2 with pyrocatechol through an azo spacer, characterized (by elemental analysis, IR and TGA) and studied for preconcentrating Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) using flame atomic absorption spectrometry (FAAS) for metal monitoring. The sorption is quantitative in the pH range 3.0-6.5, whereas quantitative desorption occurs instantaneously with 2 M HCl or HNO(3) The sorption capacity has been found to be in the range 0.023-0.092 mmol g(-1) of resin. The loading half time (t(1/2)) is 1.4, 4.8, 1.6, 3.2, 2.3 and 1.8 min, respectively for Cd, Co, Cu, Fe, Ni and Zn. The tolerance limits of electrolytes NaCl, NaBr, NaNO(3), Na(2)SO(4) and Na(3)PO(4) in the sorption of all the six metal ions (0.2 mug ml(-1)) are reported. The Mg(II) and Ca(II) are tolerable with each of them (0.2 mug ml(-1)) up to a concentration level of 0.01-1.0 M. The enrichment factor has been found to be 200 except for Fe and Cu for which the values are 80 and 100, respectively. The lowest concentration of metal ion for quantitative recovery is 5, 10, 20, 25, 10 and 10 mug l(-1) for Cd, Co, Cu, Fe, Ni and Zn, respectively. The simultaneous determination of all these metal ions is possible and the method has been applied to determine all the six metal ions in tap and river water samples (RSD相似文献   

13.
Binary aqueous mixtures of NaNO3, KNO3 and NaClO4 oxidizers were analyzed using electrospray ionization mass spectrometry. Sodium nitrate solutions were observed to form doubly charged clusters of the type [(NaNO3)n2Na]2+ and [(NaNO3)n2NO3]2-, where n = 11, 13, 15, etc., in addition to singly charged cluster ions that have been reported previously. The identity of the doubly charged clusters was determined by tandem mass spectrometry. Two-component NaNO3-KNO3 salt solutions were observed to form cluster ions of the type [(NaNO3)i(KNO3)jNO3]- in the negative ion mode and [(NaNO3)i(KNO3)jNa]+ and [(NaNO3)i(KNO3)jK]+ in the positive ion mode, where i + j = 1, 2, 3 ... 10. Two-component solutions of KNO3-NaClO4 formed ions of the type [(KNO3)i(NaClO4)j(KClO4)k(NaNO3)lK](+) and [(KNO3)i(NaClO4)j(KClO4)k(NaNO3)lNa]+ in the positive ion mode, where i + j + k + l = 1, 2, 3 ... 10. Similar clusters containing excess nitrate and perchlorate to provide the charge are formed in the negative ion mode. In each case, the maximum number of spectral lines for a cluster of size n can be calculated as the number of combinations of n(th) order (where n = i + j) of N different cation-anion pairs taken with replication and without regard for the ordering of the N cation-anion pairs. The actual number of lines observed may be reduced due to degeneracy of nominal m/z values for some ions.  相似文献   

14.
The adsorption of Cu(II) ions onto the chitosan derived Schiff bases obtained from the condensation of chitosan with salicyaldehyde (polymer I), 2,4-dihydroxybenzaldehyde (polymer II) and with 4-(diethylamino) salicyaldehyde (polymer III) in aqueous solutions was investigated. Batch adsorption experiments were carried out as a function of contact time, pH, and polymer mass. The amount of metal-ion uptake of the polymers was determined by using atomic absorption spectrometry (AAS) and the highest Cu(II) ions uptake was achieved at pH 7.0 and by using sodium perchlorate as an ionic strength adjuster for polymers I, II, and III. The isothermal behavior and the kinetics of adsorption of Cu(II) ions on these polymers with respect to the initial mass of the polymer and temperature were also investigated; adsorption isothermal equilibrium data could be clearly explained by the Langmuir equation. The experimental data of the adsorption equilibrium from Cu(II) solution correlates well with the Langmuir isotherm equation.  相似文献   

15.
本文以带疏水侧链的丙氨酸为研究对象, 在298.15 K下测定其在LiNO3, NaNO3, KNO3, NaClO4及Na2SO4水溶液中的溶解焓, 探讨了不同种类的阳离子和阴离子对迁移焓的影响, 为揭示蛋白质与含氧酸盐水溶液的相互作用提供了有用信息.  相似文献   

16.
Metal adsorption data over a range of surface coverages typically are characterized by curvilinear metal adsorption isotherms. These isotherms generally have a slope of 1 at low surface coverage and a shallower slope at higher surface coverages. The curvature of metal adsorption isotherms with increasing surface coverage is frequently interpreted in terms of sequential adsorption onto different types of surface sites, multinuclear surface complexation, or nonideality of metal adsorption. We demonstrate that the curvature of metal adsorption isotherms can also be attributed to changes in surface charge and potential that depend on the predominant type of metal surface complex. A single-site extended triple-layer model is used to reinterpret previously studied metal adsorption isotherms and pH edges for a wide variety of metals (Cd2+, Co2+, Cu2+, Pb2+, and Zn2+) and solids (goethite, hydrous ferric oxide, corundum, and magnetite) in different electrolyte solutions (NaNO3 and NaClO4). Only metal adsorption on ferrihydrite at very low surface coverages is not consistent with the single-site triple-layer model. This discrepancy might be explained if ferrihydrite is in fact not a single phase but a mixture of two or more phases. Metal surface coverages ranging from 10(-4) to 10.2 mmol/m2 on the other minerals can be accounted for with a single-site extended triple-layer model if appropriate metal adsorption reactions are chosen. In addition, several examples suggest that, within the context of the model, surface complexation schemes can be established that describe metal adsorption over both a wide range of surface coverage and a wide range of ionic strength.  相似文献   

17.
A study of competitive adsorption of Ca(2+) and Zn(II) ions at the monodispersed SiO(2)/electrolyte solution interface is presented. Influence of ionic strength, pH, and presence of other ions on adsorption of Ca(2+) and Zn(II) in the mentioned system are investigated. zeta potential, surface charge density, adsorption density, pH(50%), and DeltapH(10-90%) parameters for different concentrations of carrying electrolyte and adsorbed ions are also presented. A high concentration of zinc ions shifts the adsorption edge of Ca(2+) ions adsorbed from solutions with a low initial concentration at the SiO(2)/NaClO(4) solution interface to the higher pH values. This effect disappears with a concentration increase of calcium ions. The presence of Ca(2+) ions in the system slightly affects the adsorption of zinc ions on SiO(2), shifting the adsorption edge toward lower pH values and thereby increasing the adsorption slope.  相似文献   

18.
In the present work, Pb(II) and Cd(II) ion adsorption onto inert organic matter (IOM) obtained from ground dried plants: Euphorbia echinus, Launea arborescens, Senecio anthophorbium growing in semi-arid zones of Morocco and Carpobrotus edulis as the Mediterranean plant has been studied. A suspension of plant deroed micro-particles adsorbs lead and cadmium present as ionic species, with a higher affinity for Pb(II). The kinetics and the maximum capacity adsorption depend on the type of plant as well as on the metal ions (atomic weight, ionic radius and electronegativity). The adsorption process is affected by various parameters such as contact time, solution volume to mass of plant particles ratio (m/V), particle size, solution pH and metal concentration. A dose of 25 g/l of adsorbent was optimal to obtain maximum adsorption of both metal ions. The maximum metal uptake was obtained with particles of organic matter of <50 microm. As to classical ionic adsorption phenomena, the adsorption of both metal ions increases with the increase of the initial concentration in the solution. For the two metal cations, the uptake efficiency of the studied plants ranged from: C. edulis>E. echinus>S. anthophorbium>L. arborescens, however, the differences are rather small. Two different waste water types (domestic and industrial) were tested and good results were obtained for removal of Pb(II) and Cd(II) at more than 90%. The removal of the metal and mineral ions waste water was observed for PO(4)(3-) at 88%, for NO(3)(-) at 96.5% and for metal ions (Pb(II), Cd(II), Cu(II) and Zn(II)) at about 100%, using IOM as absorbent.  相似文献   

19.
The formation constants for 1:1 molecular complex formation between water-soluble cobalt(II) tetradentate Schiff base complex, disodium[{bis(4-methoxy-5-sulfo-salicylaldehyde)-4,5-dimethyl-o-phenylenediiminato}cobalt(II)], Na2[Co(SO3-4-meosal-4,5-dmophen)], and nucleotides, adenosine-5'-triphosphate (ATP) and cytidine-5'-triphosphate (CTP), in mixed solvent systems of ethanol and water with different volume fractions of ethanol and water have been determined spectrophotometrically at constant ionic strength (I = 0.2 mol dm(-3) NaClO4) and temperature 278 K. Trends in the values of formation constants according to the volume fractions of ethanol and water in ethanol and water mixed solvent systems, suggest that the trend of molecular complex formation increases with increasing the volume fraction of ethanol in mixed solvent systems.  相似文献   

20.
A fluorogenic Cu(I)-catalyzed azide-alkyne cycloaddition reaction (CuAAC) of 3-azido-7-hydroxycoumarin has been used to detect metal ions in solution. The formation of a highly fluorescent triazole product signals the presence of Cu(I) or Cu(II) ions at micromolar concentrations. CuAAC can be modified by using an exogenous ligand like EDTA to detect and quantify Zn(II), Ca(II), and Cd(II) ions at micromolar concentrations by an allosteric mechanism. The increase in the formation of the triazole product is regulated by the release of Cu(II) from the Cu(II)-EDTA complex by the addition of a second metal ion, the allosteric effector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号