首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 497 毫秒
1.
Five-coordinate manganese(III) complexes of N, N'-bis(trifluoroacetylacetone)-1,2-ethylenediimine (tfacacen) have been synthesized and structurally characterized by X-ray crystallography. The presence of the electron-withdrawing -CF3 substituents enhances the electrophilicity of the metal center in these (tfacacen)MnX (X=Cl, N3, NCO, NCS) derivatives when compared with their (acacen)MnX (acacen=N, N'-bis(acetylacetone)-1,2-ethylenediimine) analogs. This is demonstrated by the increased propensity of the Mn(III) center in the tfacacen complexes to bind a sixth ligand. Binding studies were performed utilizing the upsilonN3 stretching frequency in (tfacacen)MnN3, which is sensitive to the coordination of a ligand at the vacant axial site. Of importance, cyclohexene oxide was shown to readily bind to (tfacacen)MnN3, thereby providing an opportunity for directly monitoring the dependence of the epoxide ring-opening process on the metal complex concentration. In this instance, as has been amply demonstrated in the (salen)CrX case, the ring opening of cyclohexene oxide was found to be second-order in [(tfacacen)MnN3], with an activation energy of 71.0+/-6.0 kJ/mol. In the presence of strongly coordinating anions or amine bases, the rate of epoxide ring opening by (tfacacen)MnN3 was greatly retarded. The manganese cyanate and thiocyanate complexes were examined in an effort to develop other initiators for epoxide ring opening which provide readily accessible infrared spectroscopic probes. Indeed, the thiocyanate ligand was found to be well-suited for monitoring the epoxide ring-opening reaction by infrared spectroscopy.  相似文献   

2.
The ability of NCNH(-) to construct transition metal coordination polymers and to transmit magnetic coupling was investigated. By introduction of various tetradentate Schiff base ligands (L) and different solvents (S), nine NCNH(-)-bridged manganese(III) coordination complexes were obtained. Their structures can be divided into three types: I) NCNH-bridged chains built on mononuclear [Mn(III)(L)] units, [Mn(III)(L)(mu(1,3)-NCNH)](n) (L=5-Brsalen (1), 5-Clsalen (2)); II) NCNH-bridged chains built on dinuclear [Mn(III) (2)(L)(2)] units, complexes 3-8, [Mn(III) (2)(L)(2)(mu(1,3)-NCNH)]ClO(4)S (L=salen, 5-Fsalen, 5-Clsalen, 5-OCH(3)salen; S=CH(3)OH or C(2)H(5)OH); III) NCNH-bridged Mn(III) dimers linked by hydrogen bonds into a 1D polymer, {[Mn(III)(3-OCH(3)salen)(H(2)O)](2)(mu(1,3)-NCNH)}ClO(4) x 0.5 H(2)O (9, salen=N,N'-bis(salicylidene)-1,2-diaminoethane). In these complexes, the N[triple chemical bond]C--NH(-) resonance structure dominates the bonding mode of the NCNH(-) ligand adopting the mu(1,3)-bridging mode. Magnetic characterization shows that the asymmetric NCNH(-) bridge transmits antiferromagnetic interaction between Mn(III) ions and often favors the weak ferromagnetism caused by spin canting in these one-dimensional chains. However, these complexes exhibit different magnetic behaviors at low temperatures.  相似文献   

3.
Three new cation-cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO(2)py(5))(KI(2)py(2))](n) (1) with the Schiff base ligands salen(2-), acacen(2-), and salophen(2-) (H(2)salen = N,N'-ethylene-bis(salicylideneimine), H(2)acacen = N,N'-ethylenebis(acetylacetoneimine), H(2)salophen = N,N'-phenylene-bis(salicylideneimine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen(2-) in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetranuclear complexes, {[UO(2)(acacen)](4)[μ(8)-](2)[K([18]C-6)(py)](2)} (3) and {[UO(2)(acacen)](4)[μ(8)-]}?2?[K([222])(py)] (4), {[UO(2)(salophen)](4)[μ(8)-K](2)[μ(5)-KI](2)[(K([18]C-6)]}?2?[K([18]C-6)(thf)(2)]?2?I (5), and {[UO(2)(salen)(4)][μ(8)-Rb](2)[Rb([18]C-6)](2)} (9) ([222] = [222]cryptand, py = pyridine), presenting a T-shaped cation-cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetranuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U(V)O(2)(salen)(py)][Cp*(2)Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation-cation complexes. The nature of the cation plays a key role in the preparation of stable cation-cation complexes. Stable tetranuclear complexes form in the presence of K(+) and Rb(+), whereas Li(+) leads to disproportionation. A new uranyl-oxo cluster was isolated from this reaction. The reaction of [U(V)O(2)(salen)(py)][Cp*(2)Co] (Cp* = pentamethylcyclopentadienyl) with its U(VI) analogue yields the oxo-functionalized dimer [UO(2)(salen)(py)](2)[Cp*(2)Co] (8). The reaction of the {[UO(2)(salen)(4)][μ(8)-K](2)[K([18]C-6)](2)} tetramer with protons leads to disproportionation to U(IV) and U(VI) species and H(2)O confirming the crucial role of the proton in the U(V) disproportionation.  相似文献   

4.
The synthesis of several (salen)MnN(3) complexes in good yields and purities were achieved by the reaction of manganese(iii) acetate and H(2)salen, followed by metathesis of the remaining acetate ligand with an aqueous solution of NaN(3). The X-ray structures of two derivatives, where salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediamine and N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexenediamine respectively, were determined. The complexes were shown to be monomeric 5-coordinate derivatives displaying a distorted square pyramidal geometry, and to be d(4) high-spin derivatives by solution magnetic moment measurements using the Evans method. Binding studies of the (salen)MnN(3) derivatives with added azide ions or cyclohexene oxide showed these complexes to have modest affinities for binding a sixth ligand. These observations are used to rationalize the low activity exhibited by manganese(iii) complexes relative to their chromium(iii) and cobalt(iii) analogs for serving as catalysts for the copolymerization of carbon dioxide and epoxides.  相似文献   

5.
Summary Some thorium(IV) complexes were synthesized with the tetradentate Schiff base ligands (N2O2 donor set) obtained by the condensation of ethylenediamine with salicylaldehyde (H2salen) or acetylacetone (H2 acacen). In all cases the neutral Schiff bases and not their anions are coordinated to the central thorium(IV) atom. The complexes have the general formula: ThL2Xa (L = H2 salen; X = Cl, Br, 1, NCS and L = lie acacen; X = Cl, 1, NCS, ClO4) or ThLX4 (L = H2 salen; X = NO3, ClO4 and L = H2 acacen; X = Br, NO3). The stoichiometry and coordination number of the complexes was determined on the basis of elemental analysis, conductivity measurements, i.r. spectra and t.g.a./d.t.a. data. The coordination number of the complexes is either 12 or 8 for the bisor monocomplexes respectively.  相似文献   

6.
Treatment of [[Ti(eta(5)-C(5)Me(5))(mu-NH)](3)(mu(3)-N)] with alkali-metal bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)]] in toluene affords edge-linked double-cube nitrido complexes [M(mu(4)-N)(mu(3)-NH)(2)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]](2) (M = Li, Na, K, Rb, Cs) or corner-shared double-cube nitrido complexes [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Na, K, Rb, Cs). Analogous reactions with 1/2 equiv of alkaline-earth bis(trimethylsilyl)amido derivatives [M[N(SiMe(3))(2)](2)(thf)(2)] give corner-shared double-cube nitrido complexes [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = Mg, Ca, Sr, Ba). If 1 equiv of the group 2 amido reagent is employed, single-cube-type derivatives [(thf)(x)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Mg, x = 0; M = Ca, Sr, Ba, x = 1) can be isolated or identified. The tetrahydrofuran molecules are easily displaced with 4-tert-butylpyridine in toluene, affording the analogous complexes [(tBupy)[(Me(3)Si)(2)N]M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)]] (M = Ca, Sr). The X-ray crystal structures of [M(mu(3)-N)(mu(3)-NH)(5)[Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3)-N)](2)] (M = K, Rb, Cs) and [M[(mu(3)-N)(mu(3)-NH)(2)Ti(3)(eta(5)-C(5)Me(5))(3)(mu(3))-N)](2)] (M = Ca, Sr) have been determined. The properties and solid-state structures of the azaheterometallocubane complexes bearing alkali and alkaline-earth metals are discussed.  相似文献   

7.
The reaction of manganese(III) Schiff bases of the type salen(2-) (N,N'-ethylenebis(salicylideneaminato)) with X-substituted (X = CH(3), Cl) pyridinecarboxamide dicyanoferrite(III) [Fe(X-bpb)(CN)(2)](-) gave rise to a series of cyanide-bridged Mn(6)Fe(6) molecular wheels, [Mn(III)(salen)](6)[Fe(III)(bpmb)(CN)(2)](6) x 7H(2)O (1), [Mn(salen)](6)[Fe(bpClb)(CN)(2)](6) x 4H(2)O x 2CH(3)OH (2), [Mn(salen)](6)[Fe(bpdmb)(CN)(2)](6) x 10H(2)O x 5CH(3)OH (3), [Mn(5-Br(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 24H(2)O x 8CH(3)CN (4), and [Mn(5-Cl(salpn))](6)[Fe(bpmb)(CN)(2)](6) x 25H(2)O x 5CH(3)CN (5). Compared with [Fe(bpb)(CN)(2)](-), which always gives rise to 1D or polynuclear species when reacting with Mn(III) Schiff bases, the introduction of substituents (X) to the bpb(2-) ligand has a driving force in formation of the novel wheel structure. Magnetic studies reveal that high-spin ground state S = 15 is present in the wheel compounds originated from the ferromagnetic Mn(III)-Fe(III) coupling. For the first time, the quantum Monte Carlo study has been used to modulate the magnetic susceptibility of the huge Mn(6)Fe(6) metallomacrocycles, showing that the magnetic coupling constants J range from 3.0 to 8.0 K on the basis of the spin Hamiltonian [Formula: see text]. Hysteresis loops for 1 have been observed below 0.8 K, indicative of a single-molecule magnet with a blocking temperature (TB) of 0.8 K. Molecular wheels 2-5 exhibit frequency dependence of alternating-current magnetic susceptibility under zero direct-current magnetic field, signifying the slow magnetization relaxation similar to that of 1. Significantly, an unprecedented archlike Mn(2)Fe(2) cluster, [Mn(5-Cl(salpn))](2)[Fe(bpmb)(CN)(2)](2) x 3H(2)O x CH(3)CN (6), has been isolated as an intermediate of the Mn(6)Fe(6) wheel 5. Ferromagnetic Mn(III)-Fe(III) coupling results in a high-spin S = 5 ground state. Combination of the high-spin state and a negative magnetic anisotropy (D) results in the observation of slow magnetization relaxation in 6.  相似文献   

8.
Two new Mn(III) complexes of formulas [MnL(1)(N(3))(OMe)](2) (1) and [MnL(2)(N(3))(2)](n) (2) have been synthesized by using two tridentate NNO-donor Schiff base ligands HL(1){(2-[(3-methylaminoethylimino)-methyl]-phenol)} and HL(2) {(2-[1-(2-dimethylaminoethylimino)methyl]phenol)}, respectively. Substitution of the H atom on the secondary amine group of the N-methyldiamine fragment of the Schiff base by a methyl group leads to a drastic structural change from a methoxido-bridged dimer (1) to a single μ(1,3)-azido-bridged 1D helical polymer (2). Both complexes were characterized by single-crystal X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The magnetic properties of compound 1 show the presence of weak ferromagnetic exchange interactions mediated by double methoxido bridges (J = 0.95 cm(-1)). Compound 2 shows the existence of a weak antiferromangetic coupling along the chain (J = -8.5 cm(-1)) through the single μ(1,3)-N(3) bridge with a spin canting that leads to a long-range antiferromagnetic order at T(c) ≈ 9.3 K and a canting leading to a weak ferromagnetic long-range order at T(c) ≈ 8.5 K. It also exibits metamagnetic behavior at low temperatures with a critical field of ca.1.2 T due to the weak antiferromagnetic interchain interactions that appear in the canted ordered phase.  相似文献   

9.
Two unprecedented 2D entangled layers of warp-and-woof threads interwoven by left- and right-handed helical chains, {[Mn(salen)Au(CN)2]4(H2O)}n (salen = N,N'-ethylenebis(salicylideneaminato)) and {Mn(acacen)Ag(CN)2}n (acacen = N,N'-ethylenebis(acetylacetonylideneiminate)) 2, have been synthesized and characterized.  相似文献   

10.
Yuan M  Zhao F  Zhang W  Wang ZM  Gao S 《Inorganic chemistry》2007,46(26):11235-11242
By changing ancillary tetradentate Schiff base ligands (L), two new one-dimensional azide-bridged manganese(III) coordination complexes [MnIII(L)(mu1,3-N3)]n [L = 5-Fsalen (1), 5-OCH3 (2); salen = N,N'-bis(salicylidene)-1,2-diaminoethane] as well as a mononuclear complex [MnIII(salophen)(N3)] (3) [salophen = N,N'-bis(salicylidene)-o-phenylenediamine] have been successfully obtained. All of them have been structurally and magnetically characterized. In the structures of 1-3 each MnIII ion is in a distorted octahedral geometry with an obvious Jahn-Teller effect, where the tetradentate L ligands all bind in the equatorial mode, whereas in the axial direction, the N3- ion acts as an end-to-end bridge in 1 and 2 while a terminal group in 3 with a methanol molecule at the other end. Magnetic characterization shows that the mu1,3-bridging azide ion proves to mainly transmit antiferromagnetic interaction between MnIII ions, but these three complexes exhibit various magnetic behaviors at low temperatures. Noteworthily, complex 2 behaves as a weak ferromagnet with a relatively large coercive field of 2.3 kOe, much larger than the value reported previously.  相似文献   

11.
12.
A series of complexes of the form (salen)AlZ, where H2salen = N,N'-bis(salicylidene)-1,2-phenylenediimine and various other salen derivatives and Z = Et or Cl, have been synthesized. Several of these complexes have been characterized by X-ray crystallography. An investigation of the utilization of these aluminum derivatives along with both ionic and neutral bases as cocatalysts for the copolymerization of carbon dioxide and cyclohexene oxide has been conducted. By studying the reactivity of these complexes for this process as substituents on the diimine backbone and phenolate rings are altered, we have observed that aluminum prefers electron-withdrawing groups on the salen ligands, thereby producing an electrophilic metal center to be most active toward production of polycarbonates from CO2 and cyclohexene oxide. For example, the complex derived from H2salen = N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-ethylenediimine is essentially inactive when compared to the analogous derivative containing nitro substituents in the 3-positions of the phenolate groups. This is to be contrasted with the catalytic activity observed for the (salen)CrX systems, where electron-donating salen ligands greatly enhanced the reactivity of these complexes for the coupling of CO2 and epoxides. While (salen)AlZ complexes are capable of producing poly(cyclohexene oxide) carbonate with low amounts of polyether linkage along with small quantities of cyclic carbonate byproducts, their reactivities, covering a turnover frequency range of 5.2-35.4 mol of epoxide consumed/(mol of Al x h), are greatly reduced when compared to their (salen)CrX analogues under identical reaction conditions.  相似文献   

13.
Yang C  Wang QL  Qi J  Ma Y  Yan SP  Yang GM  Cheng P  Liao DZ 《Inorganic chemistry》2011,50(9):4006-4015
Two novel complexes, [{Mn(salen)}(2){Mn(salen)(CH(3)OH)}{Cr(CN)(6)}](n)·2nCH(3)CN·nCH(3)OH (1) and [Mn(5-Clsalmen)(CH(3)OH)(H(2)O)](2n)[{Mn(5-Clsalmen)(μ-CN)}Cr(CN)(5)](n)·5.5nH(2)O (2) (salen(2-) = N,N'-ethylene-bis(salicylideneiminato) dianion; 5-Clsalmen(2-) = N,N'-(1-methylethylene)-bis(5-chlorosalicylideneiminato) dianion), were synthesized and structurally characterized by X-ray single-crystal diffraction. The structural analyses show that complex 1 consists of one-dimensional (1D) alternating chains formed by the [{Cr(CN)(6)}{Mn(salen)}(4){Mn(salen)(CH(3)OH)}(2)](3+) heptanuclear cations and [Cr(CN)(6)](3-) anions. While in complex 2, the hexacyanochromate(III) anion acts as a bis-monodentate ligand through two trans-cyano groups to bridge two [Mn(5-Clsalmen)](+) cations to form a straight chain. The magnetic analysis indicates that complex 1 shows three-dimensional (3D) antiferromagnetic ordering with the Ne?el temperature of 5.0 K, and it is a metamagnet displaying antiferromagnetic to ferromagnetic transition at a critical field of about 2.6 kOe at 2 K. Complex 2 behaves as a molecular magnet with Tc = 3.0 K.  相似文献   

14.
本文合成了N,N’-双(2’-羟基苯乙酮)缩乙二胺、N,N’-双(2’-羟基苯乙酮)缩1,2-丙二胺、N,N’-双(2’-羟基苯乙酮)缩1,3-丙二胺和N,N’-双(2’-羟基苯乙酮)缩邻苯二胺四种Schiff配体以及它们的锰(Ⅲ)配合物1,2,3和4。并考察了这四种锰(Ⅲ)配合物作为催化剂,催化以NaOCl为氧源环氧化苯乙烯和环己烯的反应的性能。同时考察了反应温度、助配体、NaOCl的浓度以及pH值对催化环氧化反应的影响。  相似文献   

15.
Treatment of [N(n)Bu(4)][Os(VI)(N)Cl(4)] with a stoichiometric amount of H(2)L (L = N,N'-bis(salicylidene)-o-cyclohexylenediamine dianion) in the presence of PF(6)(-) or ClO(4)(-) in MeOH affords [Os(VI)(N)(L)(OH(2))](PF(6)) 1a and [Os(VI)(N)(L)(CH(3)OH)](ClO(4)) 1b, respectively. The structure of 1b has been determined by X-ray crystallography and the Os≡N bond distance is 1.627(3) ?. In the presence of a N-donor heterocyclic ligand in CH(3)CN, 1a reacts at room temperature to afford the mixed-valence μ-N(2) (salen)osmium species [(X)(L)Os(III)-N≡N-Os(II)(L)(X)](PF(6)), 2-14 (X = py 2; 4-Mepy 3; 4-(t)Bupy 4; pz 5; 3-Mepz 6; 3,5-Me(2)pz 7; Im 8; 1-MeIm 9; 2-MeIm 10; 4-MeIm 11; 1,2-Me(2)Im 12; 2-Meozl 13; 4-MeTz 14). These complexes are formed by ligand-induced N···N coupling of two [Os(VI)≡N](+) to give initially [Os(III)-N(2)-Os(III)](2+), which is then reduced to give the more stable mixed-valence species [Os(III)-N(2)-Os(II)](+). Cyclic voltammograms (CVs) of 2-14 show two reversible couples, attributed to Os(III,III)/Os(III,II) and Os(III,II)/Os(II,II). The large comproportionation constants (K(com)) of (5.36-82.3) × 10(13) indicate charge delocalization in these complexes. The structures of 3 and 14 have been determined by X-ray crystallography, the salen ligands are in uncommon cis-β configuration. Oxidations of 4 and 14 by [Cp(2)Fe](PF(6)) afford the symmetrical species [(X)(L)Os(III)-N≡N-Os(III)(L)(X)](PF(6))(2) (X = 4-(t)Bupy 15; 4-MeTz 16). These are the first stable μ-N(2) diosmium(III,III) complexes that have been characterized by X-ray crystallography.  相似文献   

16.
在水杨醛与二元胺形成的Schiff碱与Mn盐的反应体系中分离出两个单核Mn化合 物,(salen)Mn(H_2O)Cl(1)和[(salpr)Mn(H_2O)_2]Cl(2),并测定了结构。应用对 苯二甲酸在碱性条件下拉接两个单核Mn的Schiff碱配位单元,生成(salen)_2Mn_2 [μ-p-C_6H_4(COO)_2](H_2O)(CH_3OH)(3)并进行了结构表征。讨论了这些化合物 的红外及~1HNMR谱,揭示了Mn中心对配体信号的影响。  相似文献   

17.
A series of dinickel(II) complexes with the 24-membered macrocyclic hexaazadithiophenol ligand H(2)L(Me) was prepared and examined. The doubly deprotonated form (L(Me))(2-) forms complexes of the type [(L(Me))Ni2II(mu-L')](n+) with a bioctahedral N(3)Ni(II)(mu-SR)(2)(mu-L')Ni(II)N(3) core and an overall calixarene-like structure. The bridging coordination site L' is accessible for a wide range of exogenous coligands. In this study L'=NO(3)(-), NO(2)(-), N(3)(-), N(2)H(4), pyrazolate (pz), pyridazine (pydz), phthalazine (phtz), and benzoate (OBz). Crystallographic studies reveal that each substrate binds in a distinct fashion to the [(L(Me))Ni(2)](2+) portion: NO(2)(-), N(2)H(4), pz, pydz, and phtz form mu(1,2)-bridges, whereas NO(3)(-), N(3)(-), and OBz(-) are mu(1,3)-bridging. These distinctive binding motifs and the fact that some of the coligands adopt unusual conformations is discussed in terms of complementary host-guest interactions and the size and form of the binding pocket of the [(L(Me))Ni(2)](2+) fragment. UV/Vis and electrochemical studies reveal that the solid-state structures are retained in the solution state. The relative stabilities of the complexes indicate that the [(L(Me))Ni(2)](2+) fragment binds anionic coligands preferentially over neutral ones and strong-field ligands over weak-field ligands. Secondary van der Waals interactions also contribute to the stability of the complexes. Intramolecular ferromagnetic exchange interactions are present in the nitrito-, pyridazine-, and the benzoato-bridged complexes where J=+6.7, +3.5, and +5.8 cm(-1) (H=-2 JS(1)S(2), S(1)=S(2)=1) as indicated by magnetic susceptibility data taken from 300 to 2 K. In contrast, the azido bridge in [(L(Me))Ni(2)(mu(1,3)-N(3))](+) results in an antiferromagnetic exchange interaction J=-46.7 cm(-1). An explanation for this difference is qualitatively discussed in terms of bonding differences.  相似文献   

18.
The most active and robust current catalysts for the copolymerization of carbon dioxide and epoxides or oxetanes, (salen)CrX in conjunction with PPNX (PPN(+) = (Ph3P)2N(+)) or n-Bu4NX (X = Cl, N3, CN, NCO), are characterized both in solution by infrared spectroscopy and in the solid-state by X-ray crystallography. All anions (X) afford six-coordinate chromium(III) PPN(+) or n-Bu4N(+) salts composed of trans-(salen)CrX2(-) species. Of the X groups investigated in (salen)CrX, chloride is easily displaced by the others, that is, the reaction of (salen)CrCl with 2 equiv of N3(-), CN(-), or NCO(-) quantitatively provide (salen)Cr(N3)2(-), (salen)Cr(CN)2(-), and (salen)Cr(NCO)2(-), respectively. On the other hand, addition of less than 2 equiv of azide to (salen)CrCl leads to a Schlenk (ligand redistribution) equilibrium of the three possible anions both in solution and in the solid-state as shown by X-ray crystallography and electrospray ionization mass spectrometry. It was further demonstrated that all trans-(salen)CrX2(-) anions react with the epoxide or oxetane monomers in TCE (tetrachloroethane) solution to afford an equilibrium mixture containing (salen)CrX x monomer, with the oxetane adduct being thermodynamically more favored. The ring-opening steps of the bound cyclic ether monomers by X(-) were examined, revealing the rate of ring-opening of the epoxides (cyclohexene oxide and propylene oxide) to be much faster than of oxetane, with propylene oxide faster than cyclohexene oxide. Furthermore, both X anions in (salen)CrX2(-) were shown to be directly involved in monomer ring-opening.  相似文献   

19.
Three new centrosymmetric trinuclear nickel(II) and manganese(II) complexes, Ni[Ni(CH(3)COO)(CPA)](2) (1), Ni[Ni(CH(3)COO)(BPA)](2) (2), Mn[Mn(CH(3)COO)(BPA)](2) (3), where H(2)CPA = N,N'-bis(5-chlorosalicylidene)-1,3-propanediamine, H(2)BPA = N,N'-bis(5-bromosalicylidene)-1,3-propanediamine, and two new centrosymmetric dinuclear zinc(II) complexes, [Zn(2)(CMP)(2)] (4) and [Zn(2)(BMP)(2)] (5), where H(2)CMP = 4-chloro-2-{[3-(5-chloro-2-hydroxybenzyl)aminopropylimino]methyl}phenol, and H(2)BMP = 4-bromo-2-{[3-(5-bromo-2-hydroxybenzyl)aminopropylimino]methyl}phenol, have been prepared from the Schiff bases derived from 5-halido-substituted salicylaldehydes with N-hexylpropane-1,3-diamine under solvothermal conditions. The complexes have been characterised by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction studies. The complexes 1, 2, and 3 crystallise in the monoclinic space group P2(1)/c with cell dimensions a = 9.347(1), b = 11.507(2), c = 18.539(2) ?, β = 93.774(2)°, Z = 2 (for 1), a = 9.111(4), b = 12.089(6), c = 18.724(8) ?, β = 92.117(7)°, Z = 2 (for 2), and a = 11.328(2), b = 22.468(5), c = 8.270(2) ?, β = 93.74(3)°, Z = 2 (for 3), while complexes 4 and 5 crystallise in the triclinic space group P1, with cell dimensions a = 7.483(1), b = 9.990(2), c = 12.155(2) ?, α = 75.27(3), β = 85.00(3), γ = 73.82(3)°, Z = 1 (for 4), and a = 7.008(1), b = 10.081(2), c = 13.095(3) ?, α = 100.62(3), β = 95.51(3), γ = 104.03(3)°, Z = 1 (for 5). It is interesting that the mono-Schiff bases 4-chloro-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HCCP) and 4-bromo-2-[(3-cyclohexylaminopropylimino)methyl]phenol (HBCP) used to prepare the nickel(II) and manganese(II) complexes were transferred to bis-Schiff bases H(2)CPA and H(2)BPA in the complexes 1, 2, and 3, while the mono-Schiff bases HCCP and HBCP used to prepare the zinc(II) complexes were transferred to novel ligands H(2)CMP and H(2)BMP, bearing the unexpected, newly formed carbon-nitrogen single bond.  相似文献   

20.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号