首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Reversible remote‐controlled switching of the properties of nanoporous metal–organic frameworks (MOFs) is enabled by incorporating photoswitchable azobenzene. The interaction of the host material with different guest molecules, which is crucial for all applications, is precisely studied using thin MOF films of the type Cu2(BDC)2(AzoBipyB). A molecule‐specific effect of the photoswitching, based on dipole–dipole interactions, is found.  相似文献   

2.
A bio‐inspired design of using metal–organic framework (MOF) microcrystals with well‐defined multi‐shelled hollow structures was used as a matrix to host multiple guests including molecules and nanoparticles at separated locations to form a hierarchical material, mimicking biological structures. The interactions such as energy transfer (ET) between different guests are regulated by precisely fixing them in the MOF shells or encapsulating them in the cavities between the MOF shells. The proof‐of‐concept design is demonstrated by hosting chromophore molecules including rhodamine 6G (R6G) and 7‐amino‐4‐(trifluoromethyl)coumarin (C‐151), as well as metal nanoparticles (Pd NPs) into the multi‐shelled hollow zeolitic imidazolate framework‐8 (ZIF‐8). We could selectively establish or diminish the guest‐to‐framework and guest‐to‐guest ET. This work provides a platform to construct complex multifunctional materials, especially those need precise separation control of multi‐components.  相似文献   

3.
The chiral feature of γCD‐MOF, and especially the emergent cubic void, was not unveiled so far. Now, through the host–guest interaction between γCD‐MOF and achiral luminophores with different charges and sizes, the unique cubic chirality of the emerging void in γCD‐MOF as well as a size effect on CPL induction are revealed for the first time. Numerous achiral luminophores could be integrated into γCD‐MOF and emitted significantly boosted circularly polarized luminescence. While the small sized luminophores preferred to be loaded into the intrinsic void of γCD, large ones were selectively encapsulated into the cubic void. Interestingly, when the size of the guest luminophores was close to the cube size, it showed strong negative CPL. Otherwise, either positive or negative CPL was induced.  相似文献   

4.
Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site‐specific recognition takes advantage of cooperative spatial effects, as in local folding in protein–DNA binding. Herein, we report a new nucleobase‐tagged metal–organic framework (MOF), namely ZnBTCA (BTC=benzene‐1,3,5‐tricarboxyl, A=adenine), in which the exposed Watson–Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson–Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host–guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine–thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed.  相似文献   

5.
In porous materials, metal sites with coordinate solvents offer opportunities for many applications, especially those promoted by host–guest chemistry, but such sites are especially hard to create for Li‐based materials, because unlike transition metals, lithium does not usually possess a high‐enough coordination number for both framework construction and guest binding. This challenge is addressed by mimicking the functional group ratio and metal‐to‐ligand charge ratio in MOF‐74. A family of rod‐packing lithium–organic frameworks (CPM‐47, CPM‐48, and CPM‐49) were obtained. These materials exhibit an extremely high density of guest‐binding lithium sites. Also unusual is the homo‐helical rod‐packing in the CPM series, as compared to the hetero‐helical rod packing by helices of opposite handedness in MOF‐74. This work demonstrates new chemical and structural possibilities in developing a record‐setting high density of guest‐binding metal sites in inorganic–organic porous materials.  相似文献   

6.
Biological and artificial molecules and assemblies capable of supramolecular recognition, especially those with nucleobase pairing, usually rely on autonomous or collective binding to function. Advanced site‐specific recognition takes advantage of cooperative spatial effects, as in local folding in protein–DNA binding. Herein, we report a new nucleobase‐tagged metal–organic framework (MOF), namely ZnBTCA (BTC=benzene‐1,3,5‐tricarboxyl, A=adenine), in which the exposed Watson–Crick faces of adenine residues are immobilized periodically on the interior crystalline surface. Systematic control experiments demonstrated the cooperation of the open Watson–Crick sites and spatial effects within the nanopores, and thermodynamic and kinetic studies revealed a hysteretic host–guest interaction attributed to mild chemisorption. We further exploited this behavior for adenine–thymine binding within the constrained pores, and a globally adaptive response of the MOF host was observed.  相似文献   

7.
A guest‐dependent dynamic fivefold interpenetrated 3D porous metal–organic framework (MOF) of ZnII ions has been synthesized that exhibits selective carbon dioxide adsorption. Furthermore, the MOF shows excellent luminescence behavior, which is supported by a systematic study on the guest‐responsive multicolor emission of a suspension of the MOF. The dual‐emission behavior arises from the excited‐state intramolecular proton transfer (ESIPT), and the compound also shows remarkable potential to detect traces of water in various organic solvents. The experimental observations were also painstakingly authenticated by using time‐dependent density‐functional‐theory (DFT) calculations.  相似文献   

8.
The crystalline sponge method (CSM) is primarily used for structural determination by single‐crystal X‐ray diffraction of a single analyte encapsulated inside a porous MOF. As the host–guest systems often show severe disorder, reliable crystallographic determination is demanding; thus the dynamics of the guest entering and the formation of nanoconfined molecular aggregates has not been in the spotlight. Now, the concept is investigated of the CSM for monitoring the structural evolution of nanoconfined supramolecular aggregates of eugenol guests with displacement of DMF inside the cavities of the flexible MOF, PUM168. The interpretation of the electron density provides a series of unique detailed snapshots depicting the supramolecular guest aggregation, thus showing the tight interplay between the host flexible skeleton and the molecular guests through the DMF‐to‐eugenol exchange process.  相似文献   

9.
We use density functional theory, newly parameterized molecular dynamics simulations, and last generation 15N dynamic nuclear polarization surface enhanced solid‐state NMR spectroscopy (DNP SENS) to understand graft–host interactions and effects imposed by the metal–organic framework (MOF) host on peptide conformations in a peptide‐functionalized MOF. Focusing on two grafts typified by MIL‐68‐proline ( ‐Pro ) and MIL‐68‐glycine‐proline ( ‐Gly‐Pro ), we identified the most likely peptide conformations adopted in the functionalized hybrid frameworks. We found that hydrogen bond interactions between the graft and the surface hydroxyl groups of the MOF are essential in determining the peptides conformation(s). DNP SENS methodology shows unprecedented signal enhancements when applied to these peptide‐functionalized MOFs. The calculated chemical shifts of selected MIL‐68‐NH‐ Pro and MIL‐68‐NH‐ Gly‐Pro conformations are in a good agreement with the experimentally obtained 15N NMR signals. The study shows that the conformations of peptides when grafted in a MOF host are unlikely to be freely distributed, and conformational selection is directed by strong host–guest interactions.  相似文献   

10.
An understanding of solid‐state crystal dynamics or flexibility in metal–organic frameworks (MOFs) showing multiple structural changes is highly demanding for the design of materials with potential applications in sensing and recognition. However, entangled MOFs showing such flexible behavior pose a great challenge in terms of extracting information on their dynamics because of their poor single‐crystallinity. In this article, detailed experimental studies on a twofold entangled MOF ( f‐MOF‐1) are reported, which unveil its structural response toward external stimuli such as temperature, pressure, and guest molecules. The crystallographic study shows multiple structural changes in f‐MOF‐1 , by which the 3 D net deforms and slides upon guest removal. Two distinct desolvated phases, that is, f‐MOF‐1 a and f‐MOF‐1 b , could be isolated; the former is a metastable one and transformable to the latter phase upon heating. The two phases show different gated CO2 adsorption profiles. DFT‐based calculations provide an insight into the selective and gated adsorption behavior with CO2 of f‐MOF‐1 b . The gate‐opening threshold pressure of CO2 adsorption can be tuned strategically by changing the chemical functionality of the linker from ethanylene (?CH2?CH2?) in f‐MOF‐1 to an azo (?N=N?) functionality in an analogous MOF, f‐MOF‐2 . The modulation of functionality has an indirect influence on the gate‐opening pressure owing to the difference in inter‐net interaction. The framework of f‐MOF‐1 is highly responsive toward CO2 gas molecules, and these results are supported by DFT calculations.  相似文献   

11.
The formation of host–guest (H‐G) complexes between 1,8‐bis[(diethylgallanyl)ethynyl]anthracene (H) and the N‐heterocycles pyridine and pyrimidine (G) was studied in solution using a combination of NMR titration and diffusion NMR experiments. For the latter, diffusion coefficients of potential host–guest structures in solution were compared with those of tailor‐made reference compounds of similar shape (synthesized and characterized by NMR, HRMS, and in part XRD). Highly dynamic behavior was observed in both cases, but with different host–guest species and equilibria. With increasing concentrations of the pyridine guest, the equilibrium H2?H2κ1‐G1?HG2 is observed (in the second step a host dimer coordinates one guest molecule); for pyrimidine the equilibrium H2→H1κ2‐G1?HG2 is observed (the formation of a 1:1 aggregate is the second step).  相似文献   

12.
Host–guest interactions of a molecular tweezer complex 1 with various planar organic molecules including polyaromatic hydrocarbons (PAHs) were investigated by 1D and 2D 1H NMR spectroscopy, UV/Vis absorption and emission titration studies. 2D and DOSY NMR spectroscopies support the sandwiched binding mode based on 1:1 host–guest interactions. The binding constants (KS) of complex 1 for various PAHs were determined by NMR titration studies and the values were found to span up to an order of 104 M ?1 for coronene to no observable interaction for benzene, indicating that the π‐surface area is important for such host–guest interactions. The substituent effect on the host–guest interaction based on the guest series of 9‐substituted anthracenes was also studied. In general, a stronger interaction was observed for the anthracene guest with electron‐donating groups, although steric and π‐conjugation factors cannot be completely excluded. The photophysical responses of complex 1 upon addition of various PAHs were measured by UV/Vis and emission titration studies. The UV/Vis absorption spectra were found to show a drop in absorbance of the metal‐to‐ligand charge‐transfer (MLCT) and ligand‐to‐ligand charge‐transfer (LLCT) admixture band upon addition of various guest molecules to 1 , whereas the emission behavior was found to change differently depending on the guest molecules, showing emission enhancement and/or quenching. It was found that emission quenching occurred either via energy transfer or electron transfer pathway or both, while emission enhancement was caused by the increase in rigidity of complex 1 as a result of host–guest interaction.  相似文献   

13.
Controlling the dynamics of ionic liquids (ILs) is a significant issue for widespread use. Metal–organic frameworks (MOFs) are ideal host materials for ILs because of their small micropores and tunable host–guest interactions. Herein, we demonstrate the first example of an IL incorporated within the micropores of a MOF. The system studied consisted of EMI‐TFSA (1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)amide) and ZIF‐8 (composed of Zn(MeIM)2; H(MeIM)=2‐methylimidazole) as the IL and MOF, respectively. Construction of the EMI‐TFSA in ZIF‐8 was confirmed by X‐ray powder diffraction, nitrogen gas adsorption, and infrared absorption spectroscopy. Differential scanning calorimetry and solid‐state NMR measurements showed that the EMI‐TFSA inside the micropores demonstrated no freezing transition down to 123 K, whereas bulk EMI‐TFSA froze at 231 K. Such anomalous phase behavior originates from the nanosize effect of the MOF on the IL. This result provides a novel strategy for stabilizing the liquid phase of the ILs down to a lower temperature region.  相似文献   

14.
Single‐ion magnets (SIMs) are the smallest possible magnetic devices and are a controllable, bottom‐up approach to nanoscale magnetism with potential applications in quantum computing and high‐density information storage. In this work, we take advantage of the promising, but yet insufficiently explored, solid‐state chemistry of metal–organic frameworks (MOFs) to report the single‐crystal to single‐crystal inclusion of such molecular nanomagnets within the pores of a magnetic MOF. The resulting host–guest supramolecular aggregate is used as a playground in the first in‐depth study on the interplay between the internal magnetic field created by the long‐range magnetic ordering of the structured MOF and the slow magnetic relaxation of the SIM.  相似文献   

15.
Photonic materials use photons as information carriers and offer the potential for unprecedented applications in optical and optoelectronic devices. In this study, we introduce a new strategy for photonic materials using metal–organic frameworks (MOFs) as the host for the rational construction of donor–acceptor (D–A) heterostructure crystals. We have engineered a rich library of heterostructure crystals using the MOF NKU‐111 as a host. NKU‐111 is based upon an electron‐deficient tridentate ligand (acceptor) that can bind to various electron‐rich guests (donors). The resulting heterocrystals exhibit spatially segregated multi‐color emission resulting from the guest‐dependent charge‐transfer (CT) emission. Spatially effective mono‐directional energy transfer results from tuning the energy gradient between adjacent domains through the selection of donor guest molecules, which suggests potential applications in integrated optical circuit devices, for example, photonic diodes, on‐chip signal processing, optical logic gates.  相似文献   

16.
An unprecedented mode of reactivity of Zn4O‐based metal–organic frameworks (MOFs) offers a straightforward and powerful approach to polymer‐hybridized porous solids. The concept is illustrated with the production of MOF‐5‐polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF‐5 crystals after heating in pure styrene for 4–24 h. The surface area and polystyrene content of the material can be fine‐tuned by controlling the duration of heating styrene in the presence of MOF‐5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF‐5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF‐5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.  相似文献   

17.
An unprecedented mode of reactivity of Zn4O‐based metal–organic frameworks (MOFs) offers a straightforward and powerful approach to polymer‐hybridized porous solids. The concept is illustrated with the production of MOF‐5‐polystyrene wherein polystyrene is grafted and uniformly distributed throughout MOF‐5 crystals after heating in pure styrene for 4–24 h. The surface area and polystyrene content of the material can be fine‐tuned by controlling the duration of heating styrene in the presence of MOF‐5. Polystyrene grafting significantly alters the physical and chemical properties of pristine MOF‐5, which is evident from the unique guest adsorption properties (solvatochromic dye uptake and improved CO2 capacity) as well as the dramatically improved hydrolytic stability of composite. Based on the fact that MOF‐5 is the best studied member of the structure class, and has been produced at scale by industry, these findings can be directly leveraged for a range of current applications.  相似文献   

18.
Stimuli‐responsive photoluminescent materials have attracted considerable attention owing to their potential applications in security protection because the information recorded directly in materials with static luminescent outputs are usually visible under either ambient or UV light. Herein, we realize reversible information anticounterfeiting by loading a photoswitchable diarylethene derivative into a lanthanide metal–organic framework (MOF). Light triggers the open‐ and closed‐form isomerization of the diarylethene unit, which respectively regulates the inactivation and activation of the photochromic FRET process between the diarylethene acceptor and lanthanide donor, resulting in reversible luminescence on–off switching of the lanthanide emitting center in the MOF host. This photoresponsive host–guest system allows for reversible multiple information pattern visible/invisible transformation by simply alternating the exposure to UV and visible light.  相似文献   

19.
A proof‐of‐concept related to the redox‐control of the binding/releasing process in a host–guest system is achieved by designing a neutral and robust Pt‐based redox‐active metallacage involving two extended‐tetrathiafulvalene (exTTF) ligands. When neutral, the cage is able to bind a planar polyaromatic guest (coronene). Remarkably, the chemical or electrochemical oxidation of the host–guest complex leads to the reversible expulsion of the guest outside the cavity, which is assigned to a drastic change of the host–guest interaction mode, illustrating the key role of counteranions along the exchange process. The reversible process is supported by various experimental data (1H NMR spectroscopy, ESI‐FTICR, and spectroelectrochemistry) as well as by in‐depth theoretical calculations performed at the density functional theory (DFT) level.  相似文献   

20.
The unique structural topology of metal–organic framework (MOF) MIL‐68, featuring two types of channels with distinct pore sizes, makes it a promising candidate for application in gas storage and separation. In this study, the behavior of as‐made and activated MIL‐68(In) was investigated in a diamond‐anvil cell under high pressure by in situ IR spectroscopy. The framework exhibits high stability under compression up to 9 GPa, whereas the bridging OH groups appear to be very sensitive to compression. Pressure‐induced structural modifications were found to be completely reversible for as‐made MIL‐68(In) but irreversible for the activated framework. Moreover, the addition of Nujol as pressure‐transmitting medium makes the framework more resilient to pressure. Finally, when loaded with CO2, the framework exhibited interesting differential binding affinities with CO2 in the hexagonal and triangular pores at different pressures. The pressure‐enhanced CO2 storage behavior and the guest–host interaction mechanism between CO2 and the MOF framework were explored with the aid of Monte Carlo simulations. These studies demonstrated great potential for MIL‐68(In) in gas‐storage applications that require extreme loading pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号