首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 717 毫秒
1.
Two typical types of luminescent organic cocrystals comprising pyrene–octafluoronaphthalene (pyrene–OFN) and pyrene–1,2,4,5‐tetracyanobezene (pyrene–TCNB) were developed by a simple supramolecular assembly strategy. The cocrystals exhibit distinct optical properties because of their different intermolecular interaction modes; that is, arene–perfluoroarene (AP) and charge‐transfer (CT) interactions. Unexpectedly, a pyrene–TCNB system with strong CT interactions was incorporated into a pyrene–OFN host as a robust guest to generate white‐light emission (WLE). In the supramolecular cocrystal system, an efficient energy‐transfer process from pyrene–OFN to pyrene–TCNB occurred because of the well‐matched spectra of the constituents and a desirable energy donor/acceptor (D/A) distance. The present competitive intermolecular interaction strategy could be applied to the fabrication of more complicated organic light‐harvesting systems.  相似文献   

2.
A new series of self‐assembled supramolecular donor–acceptor conjugates capable of wide‐band capture, and exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques as artificial photosynthetic mimics. The donor host systems comprise of a 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) containing a crown ether entity at the meso‐position and two styryl entities on the pyrrole rings. The styryl end groups also carried additional donor (triphenylamine or phenothiazine) entities. The acceptor host system was a fulleropyrrolidine comprised of an ethylammonium cation. Owing to the presence of extended conjugation and multiple chromophore entities, the BODIPY host revealed absorbance and emission well into the near‐IR region covering the 300–850 nm spectral range. The donor–acceptor conjugates formed by crown ether–alkyl ammonium cation binding of the host–guest system was characterized by optical absorbance and emission, computational, and electrochemical techniques. Experimentally determined binding constants were in the range of 1–2×105 M ?1. An energy‐level diagram to visualize different photochemical events was established using redox, computational, absorbance, and emission data. Spectral evidence for the occurrence of photoinduced charge separation in these conjugates was established from femtosecond transient absorption studies. The measured rates indicated ultrafast charge separation and relatively slow charge recombination revealing their usefulness in light‐energy harvesting and optoelectronic device applications. The bis(donor styryl)BODIPY‐derived conjugates populated their triplet excited states during charge recombination.  相似文献   

3.
Photochromic 1,2‐dithienylethene (DTE) derivatives with a high thermal stability and fatigue resistance are appealing for optical switching of fluorescence. Here, we introduce a donor–photochromic bridge–acceptor tetraphenylethene‐dithienylethene‐perylenemonoimide (TPE‐DTE‐PMI) triad, in which TPE acts as the electron donor, PMI as the electron acceptor, and DTE as the photochromic bridge. In this system, the localized and intramolecular charge transfer emission of TPE‐DTE‐PMI with various Stokes shifts have been observed due to the photoinduced intramolecular charge transfer in different solvents. Upon UV irradiation, the fluorescence quenching resulting from photochromic fluorescence resonance energy transfer in TPE‐DTE‐PMI has been demonstrated in solution and in solid films. The fluorescence on/off switching ratio in polymethylacrylate film exceeds 100, a value much higher than in polymethylmethacrylate film, thus indicating that the fluorescence switching is dependent on matrices.  相似文献   

4.
Stille, Suzuki–Miyaura and Negishi cross‐coupling reactions of bromine‐functionalised borylated precursors enable the facile, high yielding, synthesis of borylated donor–acceptor materials that contain electron‐rich aromatic units and/or extended effective conjugation lengths. These materials have large Stokes shifts, low LUMO energies, small band‐gaps and significant fluorescence emission >700 nm in solution and when dispersed in a host polymer.  相似文献   

5.
Highly adjustable photonic modules were constructed based on the heterostructures crystals of a new series of donor-acceptor metal–organic framework (D-A MOF) featuring highly tunable thermally activated delayed fluorescence (TADF). By introducing N-phenylcarbazole and derivatives as donor guests into the acceptor host NKU-111, highly tunable through-space charge transfer based TADF could be achieved through the engineering of heavy atom effect, which result in modulatable emission wavelength (540 to 600 nm) and enhanced quantum yield (up to 30.86 %). Furthermore, by rationally integrating the D-A MOFs with distinctive emissions, rod-like heterostructures crystals featuring excitation position dependent tip emissions in wide wavelength range (495 to 598 nm) could be fabricated, which could serve as highly potential photonic modules for photonic circuit applications.  相似文献   

6.
《Chemphyschem》2002,3(12):1005-1013
We report on a study of a physically formed host–guest system, which was designed to be investigated by fluorescence energy transfer. All donor and acceptor molecules used were cyanine dyes. Investigation was performed at the ensemble level as well as at the single‐molecule level. The ensemble measurements revealed a distribution of binding sites as well for the donor as for the acceptor. Accordingly, we found a distribution of the energy transfer efficiency. At the single‐molecule level, these distributions are still present. We could discriminate entities that show very efficient energy transfer, some that do not show any energy transfer and systems whose energy transfer efficiency is only about 50 %. The latter allowed the time‐resolved detection of energy transfer of single entities through the acceptor decay. Finally, we discuss the observation that the energy transfer efficiency fluctuates as a function of time.  相似文献   

7.
Herein, we report the host–guest‐type complex formation between the host molecules cucurbit[7]uril (CB[7]), β‐cyclodextrin (β‐CD), and dibenzo[24]crown‐8 ether (DB24C8) and a newly synthesized triphenylamine (TPA) derivative 1 X3 as the guest component. The host–guest complex formation was studied in detail by using 1H NMR, 2D NOESY, UV/Vis fluorescence, and time‐resolved emission spectroscopy. The chloride salt of the TPA derivative was used for recognition studies with CB[7] and β‐CD in an aqueous medium. The restricted internal rotation of the guest molecule on complex formation with either of these two host molecules was reflected in the enhancement of the emission quantum yield and the average excited‐state lifetime for the triphenylamine‐based excited states. Studies with DB24C8 as the host molecule were performed in dichloromethane, a medium that maximizes the noncovalent interaction between the host and guest fragments. The Förster resonance energy transfer (FRET) process involving DB24C8 and 1 (PF6)3, as the donor and acceptor fragments, respectively, was established by electrochemical, steady‐state emission, and time‐correlated single‐photon counting studies.  相似文献   

8.
The [2+2] cycloaddition‐retroelectrocyclization (CA‐RE) reaction between electron‐rich alkynes and electron‐deficient alkenes is an efficient procedure to create nonplanar donor–acceptor (D‐A) chromophores in both molecular and polymeric platforms. They feature attractive properties including intramolecular charge‐transfer (ICT) bands, nonlinear optical properties, and redox activities for use in next‐generation electronic and optoelectronic devices. This Review summarizes the development of the CA‐RE reaction, starting from the initial reports with organometallic compounds to the extension to purely organic systems. The structural requirements for rapid, high‐yielding transformations with true click chemistry character are illustrated by examples that include the broad alkyne and alkene substitution modes. The CA‐RE click reaction has been successfully applied to polymer synthesis, with the resulting polymeric push‐pull chromophores finding many interesting applications.  相似文献   

9.
Subphthalocyanine (SubPc), a unique ring‐reduced member of the common phthalocyanines family, although known for its higher absorptivity, reveals narrow absorption with peak maxima around 570 nm thus limiting its utility in light‐energy‐harvesting applications. In the present study, by peripheral thio–aryl substitution of SubPc macrocycle, the spectral properties have been modulated to extend the absorption and emission well into the visible/near‐IR region. Additionally, for α‐ring‐substituted derivatives, facile oxidation of SubPc was witnessed, thus making these derivatives better electron donors. Next, the preparation of donor–acceptor dyads containing the well‐known electron acceptor C60 connected to the central boron atom of SubPc was accomplished by making use of the 1,3‐dipolar cycloaddition reaction. Control experiments and free‐energy calculations using the redox and spectral data suggested that the observed fluorescence quenching of SubPc in these dyads is due to electron transfer. Accordingly, transient spectral studies performed both in polar and nonpolar solvents conclusively proved electron transfer to be the quenching mechanism in these dyads. The measured rate constants by fitting kinetic data revealed efficient charge separation and charge recombination processes, suggesting that these dyads could be useful materials for the construction of light‐to‐electricity or light‐to‐fuel production devices.  相似文献   

10.
Stimuli‐responsive photoluminescent materials have attracted considerable attention owing to their potential applications in security protection because the information recorded directly in materials with static luminescent outputs are usually visible under either ambient or UV light. Herein, we realize reversible information anticounterfeiting by loading a photoswitchable diarylethene derivative into a lanthanide metal–organic framework (MOF). Light triggers the open‐ and closed‐form isomerization of the diarylethene unit, which respectively regulates the inactivation and activation of the photochromic FRET process between the diarylethene acceptor and lanthanide donor, resulting in reversible luminescence on–off switching of the lanthanide emitting center in the MOF host. This photoresponsive host–guest system allows for reversible multiple information pattern visible/invisible transformation by simply alternating the exposure to UV and visible light.  相似文献   

11.
An artificial light‐harvesting system with sequential energy‐transfer process was fabricated based on a supramolecular strategy. Self‐assembled from the host–guest complex formed by water‐soluble pillar[5]arene (WP5), a bola‐type tetraphenylethylene‐functionalized dialkyl ammonium derivative (TPEDA), and two fluorescent dyes, Eosin Y (ESY) and Nile Red (NiR), the supramolecular vesicles achieve efficient energy transfer from the AIE guest TPEDA to ESY. ESY can function as a relay to further transfer the energy to the second acceptor NiR and realize a two‐step sequential energy‐transfer process with good efficiency. By tuning the donor/acceptor ratio, bright white light emission can be successfully achieved with a CIE coordinate of (0.33, 0.33). To better mimic natural photosynthesis and make full use of the harvested energy, the WP5?TPEDA‐ESY‐NiR system can be utilized as a nanoreactor: photocatalyzed dehalogenation of α‐bromoacetophenone was realized with 96 % yield in aqueous medium.  相似文献   

12.
Molecular organization of donor and acceptor chromophores in self‐assembled materials is of paramount interest in the field of photovoltaics or mimicry of natural light‐harvesting systems. With this in mind, a redox‐active porous interpenetrated metal–organic framework (MOF), {[Cd(bpdc)(bpNDI)] ? 4.5 H2O ? DMF}n ( 1 ) has been constructed from a mixed chromophoric system. The μ‐oxo‐bridged secondary building unit, {Cd2(μ‐OCO)2}, guides the parallel alignment of bpNDI (N,N′‐di(4‐pyridyl)‐1,4,5,8‐naphthalenediimide) acceptor linkers, which are tethered with bpdc (bpdcH2=4,4′‐biphenyldicarboxylic acid) linkers of another entangled net in the framework, resulting in photochromic behaviour through inter‐net electron transfer. Encapsulation of electron‐donating aromatic molecules in the electron‐deficient channels of 1 leads to a perfect donor–acceptor co‐facial organization, resulting in long‐lived charge‐separated states of bpNDI. Furthermore, 1 and guest encapsulated species are characterised through electrochemical studies for understanding of their redox properties.  相似文献   

13.
A convenient protocol to fabricate an organic–inorganic hybrid system with covalently bound light‐harvesting chromophores (stilbene and terphenylene–divinylene) and an electron acceptor (titanium oxide) is described. Efficient energy‐ and electron‐transfer processes may take place in these systems. Covalent bonding between the acceptor chromophores and the titania/silica matrix would be important for electron transfer, whereas fluorescence resonant energy transfer (FRET) would strongly depend on the ratio of donor to acceptor chromophores. Time‐resolved spectroscopy was employed to elucidate the detailed photophysical processes. The coupling of FRET and electron transfer was shown to work coherently to lead to photocurrent enhancement. The photocurrent responses reached a maximum when the hybrid‐material thin film contained 60 % acceptor and 40 % donor.  相似文献   

14.
Based on a donor–acceptor framework, several conjugates have been designed and prepared in which an electron‐donor moiety, ytterbium(III) porphyrinate (YbPor), was linked through an ethynyl bridge to an electron‐acceptor moiety, boron dipyrromethene (BODIPY). Photoluminescence studies demonstrated efficient energy transfer from the BODIPY moiety to the YbPor counterpart. When conjugated with the YbPor moiety, the BODIPY moiety served as an antenna to harvest the lower‐energy visible light, subsequently transferring its energy to the YbPor counterpart, and, consequently, sensitizing the YbIII emission in the near‐infrared (NIR) region with a quantum efficiency of up to 0.73 % and a lifetime of around 40 μs. Moreover, these conjugates exhibited large two‐photon‐absorption cross‐sections that ranged from 1048–2226 GM and strong two‐photon‐induced NIR emission.  相似文献   

15.
Benzodipyrrole‐based donor–acceptor boron complexes were designed and synthesized as near‐infrared‐absorbing materials. The electron‐rich organic framework combined with the Lewis acidic boron co‐ordination enabled us to tune the LUMO energy level and the HOMO–LUMO gap (i.e.,the absorption wavelength) by changing the organic acceptor units, the number of boron atoms, and the substituents on the boron atoms.  相似文献   

16.
Superior artificial light‐harvesting systems (ALHSs) require exceptional capacity in harvesting light and transferring energy. In this work, we report a novel strategy to build ALHSs with an unprecedented antenna effect (35.9 in solution and 90.4 in solid film). The ALHSs made use of a conjugated polymeric supramolecular network (CPSN), a crosslinked network obtained from the self‐assembly of a pillar[5]arene‐based conjugated polymeric host ( CPH ) and conjugated ditopic guests (Gs). The excellent performance of the CPSN could be attributed to the following factors: 1) The “molecular wire effect” of the conjugated polymeric structure, 2) aggregation‐induced enhanced emission (AEE) moieties in the CPH backbone, and 3) high capacity of donor–acceptor energy transfer, and 4) crosslinked structures triggered by the host–guest binding between Gs and CPH . Moreover, the emission of the CPSN could be tuned by using different Gs or varying the host/guest ratio, thus reaching a 96 % sRGB area.  相似文献   

17.
A novel core–shell structured columnar liquid crystal composed of a donor‐acceptor dyad of tetraphenoxy perylene bisimide (PBI), decorated with four bithiophene units on the periphery, was synthesized. This molecule self‐assembles in solution into helical J‐aggregates guided by π–π interactions and hydrogen bonds which organize into a liquid‐crystalline (LC) columnar hexagonal domain in the solid state. Donor and acceptor moieties exhibit contrasting exciton coupling behavior with the PBIs’ (J‐type) transition dipole moment parallel and the bithiophene side arms’ (H‐type) perpendicular to the columnar axis. The dyad shows efficient energy and electron transfer in solution as well as in the solid state. The synergy of photoinduced electron transfer (PET) and charge transport along the narcissistically self‐assembled core–shell structure enables the implementation of the dye in two‐contact photoconductivity devices giving rise to a 20‐fold increased photoresponse compared to a reference dye without bithiophene donor moieties.  相似文献   

18.
A series of iridium‐ and rhodium‐based hexanuclear organometallic cages containing 2,5‐dichloro‐3,6‐dihydroxy‐1,4‐benzoquinone, 9,10‐dihydroxy‐1,4‐anthraquinone, and 6,11‐dihydroxynaphthacene‐5,12‐dione ligands were synthesized from the self‐assembly of the corresponding molecular “clips” and 2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine ligands in good yields. These organometallic cages can form inclusion systems with a wide variety of π‐donor substrates, including coronene, pyrene, [Pt(acac)2], and hexamethoxytriphenylene. The 1:1 complexation of the resulting supramolecular assemblies was confirmed by 1H NMR spectroscopy. Large complexation shifts (Δδ>1 ppm) were observed in the 1H NMR spectra of guests in the presence of cage [Cp*6M6(μ‐DHNA)3(tpt)2](OTf)6 ( 6a ; M=Ir, tpt=2,4,6‐tri(4‐pyridyl)‐1,3,5‐triazine). The formation of discrete 1:1 donor–acceptor complexes, pyrene ?6 b (M=Rh), coronene ?6 a , coronene ?6 b , and [Pt(acac)2] ?6 a was confirmed by their single‐crystal X‐ray analyses. In these systems, the most important driving force for the formation of guest–host complexes is clearly the donor–acceptor π???π stacking interaction, including charge‐transfer interactions between the electron‐donating and electron‐accepting aromatic components. These structures provide compelling evidence for the existence of strong attractive forces between the electron‐deficient triazine core and electron‐rich guest. The results presented here may provide useful guidance for designing artificial receptors for functional biomolecules.  相似文献   

19.
This work reports a detailed structure–property relationship study of a series of efficient host materials based on the donor–spiro–acceptor (D‐spiro‐A) design for green and sky‐blue phosphorescent organic light‐emitting diodes (PhOLEDs). The electronic and physical effects of the indoloacridine (IA) fragment connected through a spiro bridge to different acceptor units, namely, fluorene, dioxothioxanthene or diazafluorene moiety, have been investigated in depth. The resulting host materials have been easily synthesised through short, efficient, low‐cost, and highly adaptable synthetic routes by using common intermediates. The dyes possess a very high triplet energy (ET) and tuneable HOMO/LUMO levels, depending on the strength of the donor/acceptor combination. The peculiar electrochemical and optical properties of the IA moiety have been investigated though a fine comparison with their phenylacridine counterparts to study the influence of planarisation. Finally, these molecules have been incorporated as hosts in green and sky‐blue PhOLEDs. For the derivative SIA‐TXO2 as a host, external quantum efficiencies as high as 23 and 14 % have been obtained for green and sky‐blue PhOLEDs, respectively.  相似文献   

20.
A new hybrid photostable saponite clay with embedded donor–acceptor dyes was prepared and characterized in this work. The saponite is intercalated with a luminescent polyhedral oligomeric silsesquioxane, which transfers the photoexcitation energy directly to an acceptor dye (rhodamine B). The obtained composite material was characterized by means of XRD, TEM microscopy, and UV/Vis and photoluminescence spectroscopy. A physicochemical study showed that the system behaved as an efficient Förster resonance energy transfer pair, owing to the very good spectral overlap of donor emission (λem=510–540 nm) and acceptor absorption in the λ=530–570 nm range. The hybrid material represents the first example of a photonic antenna based on a synthetic saponite clay and can be considered a step forward in the search for new, efficient, and stable materials suitable for light‐harvesting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号