首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photocatalytic water splitting utilizing solar energy is considered as one of the most ideal strategies for solving the ene rgy and environmental issues.Recently,two-dimensional(2 D) materials with an intrinsic dipole show great chance to achieve excellent photocatalytic performance.In this work,blue-phase monolayer carbon monochalcogenides(CX,X=S,Se) are constructed and systematically studied as photocatalysts for water splitting by performing first-principles calculations based on density functional theory.After confirming the great dynamical,thermal,and mechanical stability of CX monolayers,we observe that they possess moderate band gaps(2.41 eV for CS and 2.46 eV for CSe) and high carrier mobility(3.23 × 10~4 cm~2 V~(-1) s~(-1) for CS and 4.27 × 10~3 cm~2 V~(-1) s~(-1) for CSe),comparable to those of many recently reported 2 D photocatalysts.Moreover,these two monolayer materials are found to have large intrinsic dipole(0.43 D for CS and 0.51 D for CSe),thus the build-in internal electric field can be selfintroduced,which can effectively drive the separation of photongenerated carriers.More importantly,the well-aligned band edge as well as rather pronounced optical absorption in the visible-light and ultraviolet regions further ensure that our proposed CX monolayers can be used as high efficient photocatalysts for water splitting.Additionally,the effects of external strain on the electronic,optical and photocatalytic properties of CX monolayers are also evaluated.These theoretical predictions will stimulate further work to open up the energy-related applications of CX monolayers.  相似文献   

2.
The zero-field splitting of the triplet state of magnesiumporphin solvated by ethanol is represented by D = 0.035 cm?1 and |E| = 0.010 cm?1. The decay rates of the upper two spin components both are found to be about 20 s?1, while that of the bottom component (where the spin lies in the molecular plane) is about 2 s?1.  相似文献   

3.
A surfactant‐stabilized coordination strategy is used to make two‐dimensional (2D) single‐atom catalysts (SACs) with an ultrahigh Pt loading of 12.0 wt %, by assembly of pre‐formed single Pt atom coordinated porphyrin precursors into free‐standing metal–organic framework (MOF) nanosheets with an ultrathin thickness of 2.4±0.9 nm. This is the first example of 2D MOF‐based SACs. Remarkably, the 2D SACs exhibit a record‐high photocatalytic H2 evolution rate of 11 320 μmol g?1 h?1 via water splitting under visible light irradiation (λ>420 nm) compared with those of reported MOF‐based photocatalysts. Moreover, the MOF nanosheets can be readily drop‐casted onto solid substrates, forming thin films while still retaining their photocatalytic activity, which is highly desirable for practical solar H2 production.  相似文献   

4.
Pyridinium phosphorescence originates at 334 nm and has a lifetime of 3.5 s; the quantum yield is roughly 0.04. The ODMR spectrum gives a zero-field splitting of |D| = 0.134 cm?1, |E| = 0.030 cm?1 . Implications for the lowest triplet state of pyridine are discussed.  相似文献   

5.
Spontaneously solar‐driven water splitting to produce H2 and O2, that is, the conversion of solar energy to chemical energy is a dream of mankind. However, it is difficult to make overall water splitting feasible without using any sacrificial agents and external bias. Drawing inspiration from nature, a new artificial Z‐scheme photocatalytic system has been designed herein based on the two‐dimensional (2D) heterostructure of black phosphorus (BP)/bismuth vanadate (BiVO4). An effective charge separation makes possible the reduction and oxidation of water on BP and BiVO4, respectively. The optimum H2 and O2 production rates on BP/BiVO4 were approximately 160 and 102 μmol g?1 h?1 under irradiation of light with a wavelength longer than 420 nm, without using any sacrificial agents or external bias.  相似文献   

6.
The meta junction is proposed to realize efficient thermally activated delayed fluorescence (TADF) in donor–acceptor (D‐A) conjugated polymers. Based on triphenylamine as D and dicyanobenzene as A, as a proof of concept, a series of D‐A conjugated polymers has been developed by changing their connection sites. When the junction between D and A is tuned from para to meta, the singlet–triplet energy splitting (ΔEST) is found to be significantly decreased from 0.44 to 0.10 eV because of the increasing hole–electron separation. Unlike the para‐linked analogue with no TADF, consequently, the meta‐linked polymer shows a strong delayed fluorescence. Its corresponding solution‐processed organic light‐emitting diodes (OLEDs) achieve a promising external quantum efficiency (EQE) of 15.4 % (51.9 cd A?1, 50.9 lm W?1) and CIE coordinates of (0.34, 0.57). The results highlight the bright future of D‐A conjugated polymers used for TADF OLEDs.  相似文献   

7.
A core‐shell structure with CuO core and carbon quantum dots (CQDs) and carbon hollow nanospheres (CHNS) shell was prepared through facile in‐situ hydrothermal process. The composite was used for non‐enzymatic hydrogen peroxide sensing and electrochemical overall water splitting. The core‐shell structure was established from the transmission electron microscopy image analysis. Raman and UV‐Vis spectroscopy analysis confirmed the interaction between CuO and CQDs. The electrochemical studies showed the limit of detection and sensitivity of the prepared composite as 2.4 nM and 56.72 μA μM?1 cm?2, respectively. The core‐shell structure facilitated better charge transportation which in turn exhibited elevated electro‐catalysis towards hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting. The overpotential of 159 mV was required to achieve 10 mA cm?2 current density for HER and an overpotential of 322 mV was required to achieve 10 mA cm?2 current density for OER in 1.0 M KOH. A two‐electrode system was constructed for overall water splitting reaction, which showed 10 and 50 mA cm?2 current density at 1.83 and 1.96 V, respectively. The prepared CuO@CQDs@CHNS catalyst demonstrated excellent robustness in HER and OER catalyzing condition along with overall water splitting reaction. Therefore, the CuO@CQDs@CHNS could be considered as promising electro‐catalyst for H2O2 sensing, HER, OER and overall water splitting.  相似文献   

8.
Methods to synthesize crystalline covalent triazine frameworks (CTFs) are limited and little attention has been paid to development of hydrophilic CTFs and photocatalytic overall water splitting. A route to synthesize crystalline and hydrophilic CTF‐HUST‐A1 with a benzylamine‐functionalized monomer is presented. The base reagent used plays an important role in the enhancement of crystallinity and hydrophilicity. CTF‐HUST‐A1 exhibits good crystallinity, excellent hydrophilicity, and excellent photocatalytic activity in sacrificial photocatalytic hydrogen evolution (hydrogen evolution rate up to 9200 μmol g?1 h?1). Photocatalytic overall water splitting is achieved by depositing dual co‐catalysts in CTF‐HUST‐A1, with H2 evolution and O2 evolution rates of 25.4 μmol g?1 h?1 and 12.9 μmol g?1 h?1 in pure water without using sacrificial agent.  相似文献   

9.
Develop a photocatalyst system for solar energy conversion to electric energy or chemical energy is a topic of great interest for fundamental and practical importance. In this study, nitrogen-doped TiO2 with high hydrogen production by photocatalytic water splitting were prepared by microwave-assisted hydrothermal method using titanium sulfate as precursor in the presence of urea. The nitrogen doped TiO2 prepared in this study was pure anatase phase with a high surface area (372?m2?g?1) and showed a very high hydrogen evolution rate of water splitting reaction under UV light irradiation (4,386?μmol?g?1?h?1) and visible light irradiation (185?μmol?g?1?h?1) which was about 15?times higher than commercial TiO2 (Degussa P25).  相似文献   

10.
Active, stable, and earth-abundant bifunctional electrocatalyst for overall water splitting is pivotal to actualize large-scale water splitting via electrolysis. In this work, the hierarchical folded nanosheet-like Co0.85Se array on Ni foam is constructed by liquid-phase chemical conversion with cobalt precursor nanorod array. It can serve as an efficient bifunctional electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte, with a current density of 10 mA cm?2 at overpotential of 232 mV for OER and 129 mV for HER and Tafel slope of 78.9 mV dec?1 for OER and 95.0 mV dec?1 for HER, respectively. The two-electrode alkaline water electrolyzer utilizing this folded nanosheet-like Co0.85Se array as both anode and cathode toward overall water splitting offered a current of 10 mA cm?2 at a cell voltage of 1.60 V. This work explores an efficient and low-cost electrocatalyst for overall water splitting application in alkaline electrolytes.  相似文献   

11.
《Analytical letters》2012,45(15):2847-2858
Abstract

A single-line FIA system with a stream-sample splitting device for chloride determination is presented. The analytical method is based on the Fe3+/Hg(SCN)2/Cl? system and the absorbance of the red Fe(SCN)2+ species monitored spectrophotometrically at 480 nm. Using a stream-sample splitting device, the recorded signal is composed of two merged peaks. Three calibration curves were obtained, once injecting the standard solution series, two using the maximum heights of P1 and P2 peaks and one using the height of T trough. The FIA system showed three linear responses to the concentration of chloride in the ranges 10-100 ppm (P1); 10-500 ppm (P2) and 20-1000 ppm (T), respectively. Also, it was capable of detecting chloride ions in different types of water with a throughput of 15 samples h?1 and the RSD for 240 ppm of Cl? (n=10) were 1.67% (P1); 2.38% (P2) and 1.23% (T), respectively. The interference of several ions (commonly found in water) on the FIA outputs was investigated.  相似文献   

12.
D ‐(+)‐Camphor forms the enamine 2 with piperidine. Compound 2 adds HB(C6F5)2 at the enamine carbon atom C3 to form a Lewis acid/Lewis base adduct (exo‐/endo‐isomers of 3 ). Exposure of 3 to dihydrogen (2.5 bar, room temperature) leads to heterolytic splitting of H2 to form the H+/H? addition products ( 4 , two diastereoisomers) of the “invisible” frustrated Lewis pairs ( 5 , two diastereoisomers) that were apparently generated in situ by enamine hydroboration under equilibrium conditions.  相似文献   

13.
Black phosphorus (BP), a star‐shaped two‐dimensional material, has attracted considerable attention owing to its unique chemical and physical properties. BP shows great potential in photocatalysis area because of its excellent optical properties; however, its applications in this field have been limited to date. Now, a Z‐scheme heterojunction of 2D/2D BP/monolayer Bi2WO6 (MBWO) is fabricated by a simple and effective method. The BP/MBWO heterojunction exhibits enhanced photocatalytic performance in photocatalytic water splitting to produce H2 and NO removal to purify air; the highest H2 evolution rate of BP/MBWO is 21042 μmol g?1, is 9.15 times that of pristine MBWO and the NO removal ratio was as high as 67 %. A Z‐scheme photocatalytic mechanism is proposed based on monitoring of .O2?, .OH, NO2, and NO3? species in the reaction. This work broadens applications of BP and highlights its promise in the treatment of environmental pollution and renewable energy issues.  相似文献   

14.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

15.
Variable‐temperature NMR and ESR spectroscopic studies reveal that bis(dibenzo[a,i]fluorenylidene) 1 possesses a singlet ground state, 1 (S0), while the 90° twisted triplet 1 (T1) is populated to a small extent already at room temperature. Analysis of the increasing amount of paramagnetic 1 (T1) at temperatures between 300 and 500 K yields the exchange interaction Jex/h c=3351 cm?1 and a singlet–triplet energy splitting of 9.6 kcal mol?1, which is in excellent agreement with calculations (9.3 kcal mol?1 at the UKS BP86/B3LYP/revPBE level of theory). In contrast, the zero‐field splitting parameter D is very small (calculated value ?0.018 cm?1) and unmeasurable.  相似文献   

16.
Bifunctional electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte may improve the efficiency of overall water splitting. Nickel cobaltite (NiCo2O4) has been considered a promising electrode material for the OER. However, NiCo2O4 that can be used as an electrocatalyst in HER has not been studied yet. Herein, we report self‐assembled hierarchical NiCo2O4 hollow microcuboids for overall water splitting including both the HER and OER reactions. The NiCo2O4 electrode shows excellent activity toward overall water splitting, with 10 mA cm?2 water‐splitting current reached by applying just 1.65 V and 20 mA cm?2 by applying just 1.74 V across the two electrodes. The synthesis of NiCo2O4 microflowers confirms the importance of structural features for high‐performance overall water splitting.  相似文献   

17.
Pioglitazone hydrochloride (PIO) is an agonist of the peroxisome proliferator-activated receptor γ (PPARγ), used to treat diabetes. 1H-NMR spectroscopic analysis of varying ratios of β-cyclodextrin (β-CyD) and PIO in D2O confirmed the formation of β-CyD–PIO inclusion complex in aqueous solution. The 1:1 stoichiometry of β-CyD–PIO inclusion complex was determined by Scott’s plot method and binding constant (K a ) was calculated to be 155 M?1. 2D ROESY experiments confirmed that the phenyl ring of PIO act as a guest and deeply penetrate in β-CyD cavity from wider as well as narrower rim side and form two 1:1 stable inclusion complexes. Some of the PIO protons exhibited splitting, in the presence of β-CyD, indicating chiral differentiation of PIO by β-CyD.  相似文献   

18.
A two‐dimensional (2D) sp2‐carbon‐linked conjugated polymer framework (2D CCP‐HATN) has a nitrogen‐doped skeleton, a periodical dual‐pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon–carbon double bonds. Profiting from the shape‐persistent framework of 2D CCP‐HATN integrated with the electrochemical redox‐active HATN and the robust sp2 carbon‐carbon linkage, 2D CCP‐HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g?1, with high utilization of its redox‐active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g?1 vs. 0.1 A g?1) as an organic cathode material for lithium‐ion batteries.  相似文献   

19.
《Analytical letters》2012,45(15):2339-2363
Abstract

Electrodes based on amalgam materials were re-introduced in electroanalytical chemistry in the year 2000, partially as reaction to unsubstantiated public fears of liquid mercury. In this publication, the voltammetric behavior of 1-nitronaphthalene and 2-nitronaphthalene was investigated at a mercury meniscus-modified silver solid amalgam electrode. The reduction mechanism in mixed neutral buffer-methanol medium includes the four-electron reduction to hydroxylaminoderivative followed by a two-electron reduction to the amine in acidic medium, similarly to mercury electrodes. In alkaline media, both compounds show the splitting of the main four-electron reduction peak typical for mercury electrodes in two new ones, the first one corresponding to a one electron reduction of the nitroderivative to the nitro radical anion, which was confirmed by microcoulometry. Using optimized conditions (differential pulse voltammetry, Britton-Robinson buffer pH 7.0 – methanol (9:1) medium) the calibration dependences are linear in the range of 2·10?7 (4·10?7) to 1·10?4 mol L?1 for 1-nitronaphthalene (2-nitronaphthalene). After preconcentration of the analytes from drinking and river water samples using solid phase extraction the limit of determination was lowered to ~3·10?8 mol L?1.  相似文献   

20.
Factor group splittings of naphthalene vibrations are experimentally investigated for naphthalene: 2SbCl3 (C10H8 - 2SbCl3), naphthalene: octafluoronaphthalene (C10H8 : C10F8), naphthalene: TCNB, and naphthalene: TNB crystalline complexes by Raman spectroscopy and using the isotopically mixed crystal technique. It is found that only 386 cm?1 mode of C10H8 shows factor group splittings in the first two complexes. The splitting increases from 5 cm?1 in pure C10H8 crystal to 5.5cm?1 in C10H8 : 2SbCl3 but decreases to 1cm?1 in the C10H8 : C10F8 complex. Also as SbCl3 is successively replaced by SbBr3 in the complex C10H8 : 2SbCl3, the factor group splitting of 386 cm?1 C10H8 mode decreases and the mean of the factor group frequencies goes through a minimum near 0.5 mole fraction of SbBr3. A theoretical calculation using atom-atom potential model and considering only naphthalene-naphthalene interactions predicts that the factor group splitting on 386 cm?1 band should increase from pure C10H8 crystal to the C10H8 :2SbCl3 crystalline complex and decrease in C10H8 : C10F8. However, the calculation also predicts a similar trend for 943 cm?1 band of naphthalene which shows a factor group splitting of 5 cm?1 in pure C10H8 but none in the C10H8 : 2SbCl3 complex. Furthermore, the atom-atom interaction model does not explain the effect of SbBr3 substitution on the factor group splitting. The importance of electrostatic multipole interactions in explaining the behavior of factor group splitting is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号