首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
二苯并-18-冠-6-铵与硫氰酸钴配合物的晶体和分子结构   总被引:1,自引:0,他引:1  
樊悦明  周忠远 《化学学报》1986,44(7):699-703
冠醚化合物因具有环状空腔结构的特点而有独特的配位性能.随着冠醚环上杂原子的数目、种类不同(如氧、氮、硫、磷)而有不同的配合能力及其配位本质.除此之外,冠醚环上电子密度分布对配位能力具有重要作用;金属离子的电子结构对配位性质也有很大影响.对于不是很大的冠醚环来说,通常只配位碱金属、碱土金属、镧系、锕系元素,而较难配位过渡金属离子.近年来,有人通过在冠醚环上引进吸电子基团,减低环上氧原子的电子给予体性质,以求改变配位性能.我们感兴趣的是在以普通冠醚为配体时,配合物同时包含有碱金属与过渡金属离子的配位情况与结构.作者曾对18-冠-6在有钾离子与钴离子体系中的配位情况与晶体结构作了报道,本文研究了硫氰酸铵及氯化钴与二苯并-18-冠-6反应生成的配合物结构及其特点.  相似文献   

2.
通过引入2,7-萘二磺酸(2,7-NDA2-)阴离子作为结构导向剂,与五元瓜环(Q[5])和过渡金属离子(Co2+、Ni2+、Zn2+、Cd2+)在水热条件下制备了4种新颖的Q[5]基超分子自组装体(Q[5]-SA),即{[M(H2O)4(Q[5])]·(NDA)}·x H2O(M=Co (1)、Ni (2)、Zn (3))和{[Cd2Cl2(H2O)4(Q[5])]·(NDA)}·13H2O (4)。单晶X射线衍射测试结果表明,自组装体1~3同构,其中Q[5]仅一端的部分端口羰基氧原子与金属离子配位形成简单配合物;而4中Q[5]的2个端口均与金属离子Cd2+配位形成了一维配位链。在自组装体1~4中,配体2,7-H2NDA均全脱质子,形成2,7-NDA2-阴离子平衡体系电荷,但均未能与金属离子配位,而在2,7-NDA2-阴离子与Q[5]外壁之间的瓜环外壁作用下进一步形成...  相似文献   

3.
本文用CNDO/2方法从理论上探讨了碱金属离子Na^+,K^+和Cs^+与2,3-苯并-8,11,15-三甲基-18-冠-6(简称BC3-18C6)在溶液中发生的配位反应,计算了配位反应中CNDO总能量的变化,再现了量热法所得出的碱金属离子Na^+,K^+和Cs^+与BC3-18C6在溶液中生成配合物的稳定性次序:K^+>Na^+>Cs^+。所计算的配位能和配合物的水化能表明,在水溶液中碱金属水合离子与冠醚配位,形成稳定的二水配位的碱金属离子冠醚配合物[M(BC3-18GC6)(H~2O)~2]^+。碱金属离子与冠醚中的氧形成的金属-氧键不如其水合物中的金属-氧键强,碱金属离子能与冠醚配位形成稳定的配合物主要是由于配体的大环效应和配合物的溶剂化作用。  相似文献   

4.
本文用CNDO/2方法从理论上探讨了碱金属离子Na~+,K~+和Ca~+与2,3-苯并-8,11,15-三甲基-18-冠-6(简称BC3-18C6)在溶液中发生的配位反应,计算了配位反应中CNDO总能量的变化,再现了量热法所得出的碱金属离子Na~+,K~+和Cs~+与BC3-18C6在溶液中生成配合物的稳定性次序:K~+>Na~+>Cs~+. 所计算的配位能和配合物的水化能表明,在水溶液中碱金属水合离子与冠醚配位,形成稳定的二水配位的碱金属离子冠醚配合物[M(BC3-18C6)(H_2O)_2]~+. 碱金属离子与冠醚中的氧形成的金属-氧键不如其水合物中的金属-氧键强.碱金属离子能与冠醚配位形成稳定的配合物主要是由于配体的大环效应和配合物的溶剂化作用.  相似文献   

5.
近年来,有关过渡金属离子冠醚配合物的研究虽有一些报道,但这些研究所涉及的配体大多数是单取代苯并冠醚,对双取代苯并冠醚配位的研究则很少。为了进一步弄清取代冠醚对过渡金属配位性能的影响,我们研究了混合双取代的苯并-15-冠-5,根据文献[2,3]合成了4′-溴-5′-硝基苯并-15-冠-5,并制得了一种新的配合物FeCl_3·L,经性质证明此配合物是1:1型非溶剂合、不含水的固体配合物,其三个Cl~-离子位丁配合物的外界。  相似文献   

6.
吲跺啉螺吡喃是一类重要的有机光致变色化合物,当被紫外光和可见光照射时可逆地异构化.一系列的研究表明它在非银材料、非线性光学器件以及高分辨率的信息存贮和再现等诸方面的应用价值[1].90年代以来,Inouye[2,3],Kimura[4-6]和吴成泰等[7-9]曾将冠醚结构单元引入螺吡喃,研究了对碱金属离子的识别作用及其由此诱导含冠醚螺吡喃化合物的异构化现象.由于冠醚化合物对金属离子具有特定的络合作用,当在含冠醚螺吡喃化合物中加入某些金属离子时,能诱发螺吡喃结构的异构化,从而强烈地影响异构化平衡,…  相似文献   

7.
冠醚可以选择性配位金属离子 ,形成主 -客体或超分子配合物 .因此 ,冠醚的分子设计、合成 ,尤其是对金属离子的配位能力一直是化学研究领域的热点之一 [1] .为了得到高选择性的功能体系 ,控制主 -客体的配位作用 ,人们开展了广泛的冠醚合成及其配位作用的研究[2~ 4 ] .然而 ,含杂环的苯并冠醚研究较少[5~ 9] .我们曾报道了一系列冠醚对金属离子的配位能力和配位选择性 ,给出了有意义的结果[10 ,11] .本文报道两种新型苯并 -五元含硫、硒杂环 -苯并 -1 5 -冠 -5 (3 )和 (4 )的合成及其对苦味酸碱金属和重金属的萃取性能和选择性 .1 实验部…  相似文献   

8.
合成了四种以Nsp2和Nsp3为配位原子的取代不对称多齿氮杂大环化合物,制备了它们与不同金属离子的配合物,通过元素分析和光谱表征,研究了配体的结构与其配位性能的关系.以吡啶环为侧链功能基的配体L1和L2可根据其环大小选择性地识别Na+或K+离子,与过渡金属离子形成1:1型配合物,而与Hg2+,Cd2+等离子则形成1:2型配合物.大环配体L3与Co2+和Na+离子形成的双核配合物中两个冠醚环和一个Na+离子形成夹心配位结构.L5环中有两个配位中心,因而可同时与两个Ru2+离子配位.L1和L2均表现出对不同金属离子良好的液膜传输性能和传输选择性.  相似文献   

9.
合成了四种以Nsp^2和Nsp^3为配位原子的取代不对称多齿氮杂大环化合物,制备了它们与不同金属离子的配合物,通过元素分析和光谱表征,研究了配体的结构与其配位性能的关系。以吡啶环为侧链功能基的配体L^1和L^2可根据其环大小选择性地识别Na^+或K^+离子,与过渡金属离子形成1:1型配合物,而与Hg^2^+,Cd^2^+等离子则形成1:2型配合物。大环配体L^3与Co^2^+和Na^+离子形成的双核配合物中两个冠醚环和一个Na^+离子形成夹心配位结构。L^5环中有两个配位中心,因而可同时与两个Ru^2^+离子配位。L^1和L^2均表现出对不同金属离子良好的液膜传输性能和传输选择性。  相似文献   

10.
合成了四种以Nsp^2和Nsp^3为配位原子的取代不对称多齿氮杂大环化合物,制备了它们与不同金属离子的配合物,通过元素分析和光谱表征,研究了配体的结构与其配位性能的关系。以吡啶环为侧链功能基的配体L^1和L^2可根据其环大小选择性地识别Na^+或K^+离子,与过渡金属离子形成1:1型配合物,而与Hg^2^+,Cd^2^+等离子则形成1:2型配合物。大环配体L^3与Co^2^+和Na^+离子形成的双核配合物中两个冠醚环和一个Na^+离子形成夹心配位结构。L^5环中有两个配位中心,因而可同时与两个Ru^2^+离子配位。L^1和L^2均表现出对不同金属离子良好的液膜传输性能和传输选择性。  相似文献   

11.
12.
13.
14.
15.
A low barrier in the reaction pathway between the double Rydberg isomer of OH(3) (-) and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH(4) (-). Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH(3) (-) DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O(2)H(5) (-) species. Three O(2)H(5) (-) minima with H(-)(H(2)O)(2), hydrogen-bridged, and DRA-molecule structures resemble previously discovered N(2)H(7) (-) species and have well separated VEDEs that may be observable in anion photoelectron spectra.  相似文献   

16.
17.
Summary Dichlorobis(methylsalicylato)titanium(IV) reacts with potassium or amine salts of dialkyl or diaryl dithiocarbamates in 11 and 12 molar ratios in anhydrous benzene (room temperature) or in boiling CH2Cl2 to yield mixed ligand complexes: (AcOC6H4O)2 Ti(S2CNR2)Cl (1) and (AcOC6H4O)2 Ti(S2CNR2)2 (2), R=Et, n-Pr, n-Bu, cyclo-C4H8 and cyclo-C5H10. These compounds are moisture sensitive and highly soluble in polar solvents. Molecular weight measurement in conjunction with i.r.,1H and13C n.m.r. spectral studies suggest coordination number 7 and 8 around titanium(IV) in (1) and (2) respectively.  相似文献   

18.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

19.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号