首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用紫外光聚合法合成了聚乙二醇双丙烯酸酯(PEGDA)/甲基丙烯酸-2-羟基乙酯(HEMA)复合凝胶,在不同的条件下进行等离子处理后,紫外光下进行表面接枝改性。在凝胶表面引入亲水性基团,改善材料的亲水性。研究了不同等离子体处理条件及辐射条件对丙烯酰胺(AAm)接枝率的影响。研究表明,丙烯酰胺接枝率随着等离子体处理时间的增加先增大后减小,随着紫外光照射时间、丙烯酰胺浓度的增大而增大。  相似文献   

2.
聚烯烃纤维表面光接枝的ESCA表征   总被引:2,自引:0,他引:2  
以320—440nmUV为光源,二苯甲酮(BP)为光引发剂,丙烯酸(AA)和丙烯酰胺(AM)为单体,在高强度聚乙烯(HSPE)纤维上进行光引发接枝反应。由于纤维,表面接枝仅发生在小于50A的极薄层内,这样的表面接枝率不可能用通常的称重法测定,因而无法用通常意义的重量接枝率来表征。本文对表面接枝纤维用X射线光电子能谱(ESCA)进行分析测试,以谱中氮(或氧)原子1s内壳层电子和碳原子1s内壳层电子谱线的积分强度相对比值来表征接枝程度。傅里叶红外(FTIR)内反射光谱的测试结果,以及对接枝纤维进行的染色性和粘接性测试表明,用ESCA的上述积分强度相对比值(RI%)来半定量表征接枝程度是合宜的。  相似文献   

3.
接枝丙烯酰胺改善聚乙烯膜表面亲水性的研究   总被引:2,自引:0,他引:2  
利用等离子体技术和紫外照射接枝相结合在聚乙烯膜表面接枝丙烯酰胺(AAm)以改善其亲水性。通过衰减全反射红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)和接触角测定验证了在无光引发剂的条件下,将等离子体预处理和紫外照射接枝结合起来可以有效地提高AAm的接枝效果,很好地改善PE膜表面的亲水性。探讨了等离子体复合参数W/(FM)、等离子体预处理时间、AAm单体浓度以及紫外照射时间对改善PE膜表面亲水性的影响,确定改善PE膜表面亲水性的最佳实验条件。  相似文献   

4.
陈培珍  刘瑞来  饶瑞晔 《应用化学》2016,33(12):1389-1395
将具有温度响应的聚N-异丙基丙烯酰胺(PNIPAm)接枝到电纺纤维素纳米纤维膜上,制备温度响应型纤维素接枝聚N-异丙基丙烯酰胺(PNIPAm-g-Cell)纳米纤维水凝胶。 研究接枝单体(N)与纤维素(c)的质量比、反应温度、反应时间和引发剂浓度对产物接枝率、溶胀性和形貌的影响。 结果表明,最佳聚合反应条件为m(N):m(c)=15:1、反应温度40 ℃、反应时间3 h、引发剂浓度为10 mmol/L,得到PNIPAm-g-Cell接枝率和溶胀率分别为35%和31%。 与PNIPAm相比,PNIPAm-g-Cell水凝胶的低临界相转变温度(LCST)显著升高,说明亲水性纤维素的引入改变了体系的亲疏水平衡。 去溶胀动力学测试表明,0.5 min内接枝率为25%和35%的水凝胶保水率分别降低至93%和61%。 说明接枝率越高PNIPAm-g-Cell水凝胶对温度的响应速度越快,对温度越敏感。  相似文献   

5.
淀粉糊化对淀粉—丙烯酰胺接枝共聚的影响   总被引:1,自引:0,他引:1  
本文比较了糊化前后的淀粉结构形态及它和丙烯酰胺接枝共聚的反应速率、接枝率、支链分子量的变化及接枝物结构形态的差异。淀粉糊化后,团粒结构解体、润胀和水合成较均匀的糊状胶体,和丙烯酰胺接枝共聚反应活性点多,初期反应速率较大,接枝率高,支链分子量较低。来糊化淀粉和丙烯酰胺接枝聚合仅发生在淀粉团粒表面,所以初期反应速度低,接枝率低。但从后期聚合速率上升和凝胶加速出现说明淀粉表面对丙烯酰胺聚合有很好的促进作用。  相似文献   

6.
采用电感耦合射频等离子体(ICP)和介质阻挡放电(DBD)低温等离子体对高性能连续纤维表面进行改性,分别采用X光电子能谱(XPS)、原子力显微镜(AFM)和动态接触角测定仪(DCA)等分析测试手段系统地研究了等离子体处理时间、放电功率、放电气压等对连续碳纤维、聚苯并二噁唑(PBO)纤维改性处理前后,纤维表面状态、表面组成、表面形貌、浸润性能的变化规律以及经等离子体处理前后纤维增强双马树脂基复合材料界面结构与性能的影响关系及变化规律、复合材料界面粘结和破坏机理.研究结果表明,经过等离子体处理后,纤维表面接枝上了大量的含羧基、羟基等极性官能团,表面粗糙度增加,表面自由能增加,纤维浸润性能得到明显改善,导致纤维与双马树脂基体界面层间剪切强度(ILSS)明显提高,复合材料的破坏模式由未处理的界面脱粘破坏转变为等离子体处理后的树脂基体破坏.最后,对纤维表面时效性及其对纤维增强双马树脂基复合材料界面性能的影响关系也进行了论述.  相似文献   

7.
锰盐引发微晶纤维素—丙烯酰胺接枝共聚所得共聚混和物:纤维素—丙烯酰胺接枝共聚物(GCAM)和丙烯酰胺均聚物(PAM)在实验室条件下处理洗煤皮水,取得了良好的效果。研究了混和物中接枝物、均聚物、水解度、用混和物作非离子絮凝剂、阴离子絮凝剂对处理洗煤废水的影响及絮凝剂与洗煤废水pI值的关系。  相似文献   

8.
采用FT-IR,ESCA,试样与水接触角和接枝率的测定探索了电火花用于引发丙烯酰胺(AAM)在BOPP薄膜表面接枝聚合反应的方法,研究了接枝BOPP薄膜的表面结构和亲水性能。结果表明,电火花能有效地引发AAM在BOPP薄膜表面的接枝聚合反应,随着电火花处理时间和接枝反应时间的延长,AAM在BOPP薄膜表面的接枝率增大。电火花处理10min,BOPP薄膜在70℃,20%(质量分数)的AAM水溶液中反应1h,接枝率高达2.06%。接枝后BOPP薄膜与水的接触角显著下降,亲水性能得到明显改善。  相似文献   

9.
轻度乙酰化苎麻纤维的结构与性能   总被引:1,自引:0,他引:1  
本文探讨苎麻纤维轻度乙酰化后,其微细结构与形态结构的变化。在碱处理直接酸分解的状态下,纤维素链上引入的乙酰基团,妨碍纤维素链间不可逆氢键的形成,极大地保留碱消晶膨润的效果,获得机械性能与碱法变性苎麻相近而接受性更高的变性苎麻纤维。讨论了变性苎麻纤维中乙酰基功能团含量对纤维接受性的影响,当乙酰基含量在一定时,变性苎麻纤维的吸湿与上色率达到最大值。  相似文献   

10.
电晕放电二氧化碳冷等离子体转化特性研究   总被引:5,自引:3,他引:2  
在常压、室温条件下利用电晕放电使二氧化碳通过冷等离子体反应分解为一氧化碳和氧气,由四极质谱在线定量在分析产物组成。考察反应条件(电晕类型、能量密度、气体流量等)对反应转化率的影响,分析了该反应的能量效率。当放电功率为40W、CO2流量为30mL.min^-1时,正电晕等离子体CO2分解反应的转化率为15.2%;CO2,专座经率随体系能量密度的增加上升,随反应时间的增加而增大,当CO2流量为90mL.min^-1、正电晕放电功率为37.6W时,反应体系的能量效率为5.89%。实验发现,正电晕放电时CO2的转化率高负电晕的转化率。  相似文献   

11.
<正> 嵌段聚醚氨酯(SPEU)是一类应用广泛的医用高分子材料。用亲水性单体进行表面接枝改性,已有不少研究,接枝聚合方法有铈盐引发、辐射引发以及光敏引发等。 本文研究一种新的接枝方法,不加光敏剂,用紫外光照射,直接引发亲水性单体接枝于SPEU膜上、接枝的单体有丙烯酰胺(AAM)与N,N-二甲基丙烯酰胺(DMAA),从接枝前后膜的性能变化可以证实接枝反应的发生。文中研究了反应条件与单体结构对接枝率的影响,并通过模型化合物,对接枝部位进行了研究。  相似文献   

12.
超声引发自由基聚合制备聚苯乙烯磺酸钠接枝炭黑   总被引:1,自引:0,他引:1  
通过在超声环境下,单体苯乙烯磺酸钠发生自由基聚合,生成的聚合物长链自由基被炭黑表面捕获,制备聚合物接枝炭黑.借助红外光谱、热重、粒度、透射电镜和zeta电位分析对该接枝炭黑进行表征.同时研究超声条件对接枝率的影响.结果表明,单体聚合并接枝到炭黑表面,同时炭黑的附聚体和一些大的聚集体结构被超声破碎,平均粒径大为减小;在300W超声波输出功率下,反应1h后,接枝率达到12.8%并趋于稳定.由于接枝分子链上磺酸基的存在,接枝炭黑在水中的分散稳定性显著改善.  相似文献   

13.
等离子体辐照的聚乙烯表面接枝交联共聚合   总被引:1,自引:1,他引:1  
聚合物利用低温等离子体预辐照进行表面接枝共聚合已有报道.此方法的优点是接枝层被限制在聚合物表面,辐照过程对基材本体性质无影响,且整个过程对环境无污染. 用等离子体使聚合物表面产生自由基,不需要表面具有不饱和键或特殊官能团,因而适用于任何聚合物,甚至于一些无机物如玻璃等.利用等离子辐照后暴露于空气的聚合物表面上生成的过氧自由基或过氧化物进行接枝反应,一般接枝量不大.本工作中,我们自己设计了反应器,以超高分子量聚乙烯(UHMWPE)为基材,以甲基丙烯酸甲酯(MMA)为接枝单体,在无氧条件下利用等离子体辐照产生的表面自由基进行了接枝聚合,产物接枝量高达10%.还用顺磁共振技术对表面自由基性质及其在接枝过程中的行为进行了跟踪研究.  相似文献   

14.
以环氧基为交联桥,制备了β-环糊精接枝纤维素纤维,获得了接枝最佳工艺条件,同时运用DSC和IR进行了表征。实验结果表明,环氧化反应乃接枝中关键步骤,其适宜工艺条件为:1g纤维素纤维所需环氧氯丙烷7mL,40%的NaOH溶液6mL,温度为40℃,时间为2.5h。侧链局部运动使纤维素纤维接枝β-环糊精后发生了次级转变。该研究有利于开发β-环糊精在纤维纺织工业的应用。  相似文献   

15.
将复杂接枝(接枝率为1540.3%)、简单接枝(接枝率为484.4%)和未接枝3种具有不同接枝交联结构的SiO2/聚甲基丙烯酸甲酯(PMMA)复合材料作为无机预分散母料,通过与PMMA树脂的溶液共混,制得一系列PMMA/SiO2/N,N-二甲基甲酰胺(DMF)高分子溶液,再将其应用于静电纺丝制备相应的电纺复合纤维.发现,只有简单接枝复合材料所制共混高分子溶液具有较好的可纺性,且通过纺丝工艺和配方的改变,即可较方便地调控电纺纤维的尺寸和SiO2含量.进一步通过粒度分析(DLS)、扫描电镜(SEM)和透射电镜(TEM)考察SiO2在高分子溶液和电纺复合纤维内的分散状态;通过超声水洗、氢氟酸刻蚀并结合马弗炉锻烧实验,定量评估SiO2在电纺复合纤维体系各部分中的分布情况.结果表明,通过上述简单过程,即可较方便地实现绝大部分简单接枝SiO2在PMMA/DMF高分子溶液和PMMA电纺纤维内初级粒子形式的高度均匀稳定分散.  相似文献   

16.
利用等离子体技术研究聚苯乙烯表面的接枝聚合反应   总被引:2,自引:0,他引:2  
用O2等离子体对聚苯乙烯(PS)进行预处理, 再用Ar等离子体引发N-乙烯基吡咯烷酮(NVP)在其表面接枝聚合. 通过接触角(CA)及表面自由能(SE)分析, 探讨了O2等离子体预处理条件对PS表面自由能的影响, 确定了预处理的最佳条件. 通过衰减全反射红外光谱(ATR-FTIR)、X射线光电子能谱(XPS)和动态接触角(DCA)分析, 比较了O2等离子体预处理前后和接枝聚合前后PS的表面组成及表面性能, 实验结果表明, 利用等离子体技术能成功地将NVP接枝聚合于PS表面, 接枝聚合后的PS表面由于极性高分子链和粗糙度的增加, 亲水性增强, 水滴易在其表面铺展. 由于接枝聚合后PS表面的高分子链在水中发生重构, 使后退角降低幅度较大, 接触角滞后现象明显.  相似文献   

17.
本文研究了用高价铈盐引发丙烯酸在PVA无纺布上接枝共聚反应的基本规律,各种因素对接枝率的影响。在最佳的反应条件下,接技率可达130%。接枝产物的IR谱图证实了产物含有大量的羧基,产物SEM图展示随着接枝量的增加,纤维表现形态的变化规律。产物的交换容量随接枝量的增加而增大,当接枝率为124%时,交换容量达7.4毫克当量/克。接枝共聚物具有较强的吸附稀土离子的能力。  相似文献   

18.
一缩二乙二醇二甲基丙烯酸酯接枝真丝的结构   总被引:10,自引:0,他引:10  
通过电子扫描电镜 (SEM)、红外光谱 (IR)、双折射、X 射线衍射及氨基酸分析等手段 ,研究了真丝用一缩二乙二醇二甲基丙烯酸酯 (P 2 )接枝后其结构与接枝率之间的关系 .氨基酸分析结果表明P 2接枝主要在真丝大分子中酪氨酸、丝氨酸、组氨酸和精氨酸的NH2 、OH和—NH—活性基团上 .通过X 射线衍射分析 ,P 2接枝并不直接影响结晶区 ,但引起分子取向的下降 ,接枝后真丝双折射下降说明接枝后因大分子取向度下降 ,接枝真丝的红外光谱显示出真丝具有 β折迭结构和P 2高聚物的结构特征峰 ,从而说明P 2接枝在纤维的无定型区内部进行 .当接枝率大于 35 %时 ,纤维的表面覆盖了一层高聚物 (P 2 ) ,并且纤维的横截面表现出明显的分纤现象 ,接枝真丝的红外光谱表明了纤维与P 2重叠吸收峰 ,说明了P 2在丝纤维内部接枝聚合 .  相似文献   

19.
超临界CO2协助多单体接枝改性聚丙烯   总被引:6,自引:0,他引:6  
许群  后振中  张延超  黄河 《应用化学》2007,24(4):416-419
利用超临界CO2作为溶胀剂和携带剂,使小分子单体马来酸酐和苯乙烯单体(MAH与St)及引发剂过氧化苯甲酰(BPO)插嵌进入聚丙烯(PP)基质中,然后在100℃条件下反应4 h得到接枝产物。研究了不同超临界CO2条件及引发剂浓度对接枝率的影响,固定超临界流体压力,改变温度,42℃为最佳温度,接枝率达到2.2%;固定温度,改变压力,10 MPa为最佳条件,接枝率为2.3%。对样品的FT-IR和SEM分析表明,共单体确实接枝到了PP分子链上,而DSC分析表明,随着接枝率的提高,材料的熔点(Tm)及表观结晶度(Ca)下降。这可能是接枝破坏了PP链结构的规整性,同时扩大了分子链间的距离所致。  相似文献   

20.
刘彤  于琴琴  王卉  蒋晓原  郑小明 《催化学报》2011,32(9):1502-1507
研究了在低温等离子体和催化剂共同作用下,CH4选择催化还原(SCR)NO的反应.在所考察的金属氧化物催化剂中,γ-Al2O3表现出最高的催化活性.当等离子体放电功率为4.5 W,反应温度为300℃时,NO转化率为56.5%;该条件下单纯等离子体反应和以γ-Al2O3为催化剂时NO转化率分别为28.9%和0,表明等离子体...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号