首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2017,29(12):2855-2862
In this study, we report on the selective of fructose on Co3O4 thin film electrode surface. A facile chemical solution deposition technique was used to fabricate Co3O4 thin film on fluorine doped tin oxide, FTO, glass. Electrode characterization was done using XRD, HRTEM, SEM, AFM, and EIS. The constructed sensor exhibited two distinctive linear ranges (0.021–1.74 mM; 1.74–∼15 mM) covering a wide linear range of up to ∼15 mM at an applied potential of +0.6 V vs Ag/AgCl in 0.1 M NaOH solution. The sensor demonstrated high, reproducible and repeatable (R.S.D of <5 %) sensitivity of 495 (lower concentration range) & 53 (higher concentration range) μA cm−2 mM−1. The sensor produced a low detection limit of ∼1.7 μM (S/N =3). The electrode was characterised by a fast response time of <6 s and long term stability. The repeatability and stability of the electrode resulted from the chemical stability of Co3O4 thin film. The sensor was highly selective towards fructose compared to the presence of other key interferences i. e. AA, AC, UA. The ease of the electrode fabrication coupled with good electrochemical activity makes Co3O4 thin film, a promising candidate for non‐enzymatic fructose detection.  相似文献   

2.
We report here a nonenzymatic sensor by using a nanoporous platinum electrode to detect glucose directly. The electrode was fabricated by electrochemical deposition and dissolution of PtZn alloy in zinc chloride‐1‐ethyl‐3‐methylimidazolium chloride (ZnCl2‐EMIC) ionic liquid. Both SEM and electrochemical studies showed the evidences for the nanoporous characteristics of the as‐prepared Pt electrodes. Amperometric measurements allow observation of the electrochemical oxidation of glucose at 0.4 V (vs. Ag/AgCl) in pH 7.4 phosphate buffer solution. The sensor also demonstrates significant reproducibility in glucose detection; the higher the roughness factor of the Pt electrode, the lower the detection limit of glucose. The interfering species such as ascorbic acid and p‐acetamidophenol can be avoided by using a Pt electrode with a high roughness factor of 151. Overall, the nanoporous Pt electrode is promising for enzymeless detection of glucose at physiological condition.  相似文献   

3.
In this work, a novel sensor for detecting hydrogen peroxide was constructed on the base of nanotubular TiO2 and platinum nanoparticles. The morphology, structural, and electrochemical properties of the Pt/TiO2 nanocomposite electrodes were characterized by SEM, XRD and electrochemical methods. With an operating potential of +0.3 V versus Ag/AgCl, the sensor produces catalytic oxidation currents at the nanocomposite electrode, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to hydrogen peroxide concentration in the range 4×10?6 to 1.25×10?3 M. The regression equation is I (μA)=0.85 c (mM)+0.16 with a correction coefficient of 0.997. At a signal‐to‐noise ratio of 3, a detection limit of 4.0 μM H2O2 can be observed for the nanocomposite electrode. In addition, the sensor has a good stability and reproducibility. The construction process is simple and inexpensive. The results demonstrated that nanotubular TiO2 exhibits great prospect for developing a class of ideal and novel bioreactors and biosensors.  相似文献   

4.
Yang H  Kang SK  Choi CA  Kim H  Shin DH  Kim YS  Kim YT 《Lab on a chip》2004,4(1):42-46
In this paper we argue for the use of iridium oxide (IrO(x)) electrodes as quasi-reference electrodes in microfabricated biosensors and biochips that operate in buffered solutions. The simple microfabrication of these electrodes consists of a one-step electrodeposition of IrO(x) onto a microfabricated platinum (Pt) electrode. The IrO(x) electrode potential was found to vary less than 20 mV over 9 days after stabilization for 1 day in a phosphate-buffered saline (PBS) solution; this behavior of the electrode potential was found to be easily reproduced. Moreover, the electrode potential was found to vary by less than 15 mV in the initial hour of its use; this behavior of the electrode potential was also found to be reproducible. The performance of a microfabricated glucose sensor employing an IrO(x) reference electrode is characterized in this paper in order to evaluate the usefulness of this new IrO(x) electrode as a quasi-reference electrode. The glucose sensor consists of a recessed microfabricated Pt electrode array, an electrodeposited IrO(x) film, an inner layer composed of an electropolymerized poly(m-phenylenediamine)/glucose oxidase (PMPD/GOx) film, and an outer or protective layer composed of Teflon and polyurethane (PU) films. The response of this sensor was found to be equivalent to the response of the same sensor employing a commercial Ag/AgCl reference electrode. These results show that a microfabricated IrO(x) electrode can be used as a quasi-reference electrode in microfabricated biosensors and biochips operating in buffered solutions.  相似文献   

5.
《Electroanalysis》2017,29(10):2401-2409
Copper nanoparticles (nano‐Cu) were electrodeposited on the surface of glassy carbon electrode (GCE) potentiostatically at −0.6 V vs. Ag/AgCl for 60 s. The developed nano‐copper modified glassy carbon electrode (nano‐Cu/GCE) was optimized and utilized for electrochemical assay of chemical oxygen demand (COD) using glycine as a standard. The surface morphology and chemical composition of nano‐Cu/GCE were investigated using scanning electron microscope (SEM) and energy dispersive X‐ray spectrometer (EDX), respectively. The electrochemical behavior was investigated using linear sweep voltammetry (LSV) which is characterized by a remarkable anodic peak at ∼0.6 V, compared to bare GCE. This indicates that nano‐Cu enhances significantly the electrochemical oxidation of glycine. The effect of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the developed sensor were investigated. The optimized nano‐Cu/GCE based COD sensor exhibited a linear range of 15 to 629.3 ppm, and a lower limit of detection (LOD) of 1.7 ppm (S/N=3). This developed method exhibited high tolerance level to chloride ion (0.35 M chloride ion has minimal influence). The analytical utility of the prepared COD sensor was demonstrated by investigating the COD recovery (99.8±4.3) and the assay of COD in different water samples. The results obtained were verified using the standard dichromate method.  相似文献   

6.
《Electroanalysis》2017,29(5):1434-1442
Silver nanospheres (AgNS) with SPR band ∼417 nm was synthesized by Green synthesis, using a pre‐hydrolysed liquor (PHL) of Nilgiri wood without any pretreatment. The synthesis was carried out at room temperature and was complete within three hours. The reduction and stabilization of silver is brought about by hemicelluloses present in the pre‐hydrolysed liquor. Electrochemical oxidation of nitrite on glassy carbon electrode (GCE) modified with the AgNS in 0.1 M phosphate buffer solution (PBS) of pH 7.0 was found to occur at 0.86 V with respect to Ag/AgCl. Electrochemical sensing experiments with AgNS/GCE showed a linear range of detection between 0.1 to 8 μM, with detection limit of 0.031 μM and a sensitivity of 580 μA mM−1cm−2.  相似文献   

7.
Silver coated ZnO nanorods and nanoflakes with different crystallographic orientations were synthesized by a combination of sputter deposition and solution growth process. Catalytic properties of morphology‐dependent Ag/ZnO nanostructures were then investigated for urea sensors without enzyme. Ag/ZnO nanorods on carbon electrodes exhibit a higher catalytic activity and an improved efficiency than Ag/ZnO nanoflakes on carbon electrodes. Ag/ZnO nanorod catalysts with more electrochemically surface area (169 cm2 mg?1) on carbon electrode facilitate urea electrooxidation due to easier electron transfer, which further promotes the urea electrolysis. The Ag/ZnO nanorod catalysts also show a significant reduction in the onset voltage (0.410 V vs. Ag/AgCl) and an increase in the current density (12.0 mA cm?2 mg?1) at 0.55 V vs Ag/AgCl. The results on urea electrooxidation show that Ag/ZnO nanostructures can be a potential catalyst for non‐enzymatic biosensors and fuel cells.  相似文献   

8.
《Electroanalysis》2017,29(6):1566-1572
In this work a simple nanostructured direct‐electron transfer bio‐electrode based on tree laccase from Rhus vernicifera is described. The electrode was implemented on a 2 mm diameter graphite mine casted with a reduced graphene surface presenting the specific capacitance of 195.8 F g−1. About 10 μl of mixture between 25 mg mL−1 laccase suspension and 5 mg mL−1 single‐walled carbon nanotubes in 2 % SDS is dropped over the surface followed by 5 μl of the biological friendly tetrakis(2,3‐dihydroxypropyl)‐silane monomer sol to provide physical entrapment in a silica matrix after gelation. The rigidity of enzyme encapsulation allowed to obtain a constant enzyme turnover of about 16 min−1 in the extended pH range of 6.0‐7.5, being the activity almost proportional to the temperature used in the interval between 25 and 40 °C. The graphite‐graphene/SWCNT‐laccase/sol‐gel electrode enabled a proportional response to molecular oxygen up to the concentration of 0.45 mmol L−1 and is capable to generate the maximum power of 4.5 μW cm−2 at 0.250 V vs the AgCl/Ag reference electrode in quiescent oxygen saturated solution.  相似文献   

9.
Novel dendrite‐like silver particles were electrodeposited on Ti substrates from a supporting electrolyte‐free 30 mmol L?1 Ag(NH3)2+ solution, to synthesize the den‐Ag/Ti electrode. Binary AgxCoy/Ti electrodes with different Ag:Co atomic ratios were further obtained by electrodeposition of Co particles on the den‐Ag/Ti electrode. Polyaniline (PANI) modified den‐Ag/Ti and AgxCoy/Ti electrodes, PANI(n)‐den‐Ag/Ti and PANI(n)‐AgxCoy/Ti, were also obtained by cyclic voltammetry at different numbers of cycles (n) in acidic and alkaline solutions containing aniline, respectively. All these electrodes exhibit high electroactivity for oxygen reduction reaction (ORR) in alkaline solution and their electroactivities follow the order: PANI(15)‐Ag31Co69/Ti>Ag31Co69/Ti>PANI(20)‐den‐Ag/Ti>den‐Ag/Ti. Among them, PANI(15)‐Ag31Co69/Ti displays the highest electrocatalytic activity for ORR with a much positive onset potential of 0 V (vs. Ag/AgCl) and a high ORR current density of 1.2 mA cm?2 at ?0.12 V (vs. Ag/AgCl). The electrocatalysts are electrochemically insensitive to methanol and ethanol oxidation, and, as cathode electrocatalysts of direct alcohol fuel cells, can resist poisoning by the possible alcohol crossover from the anode.  相似文献   

10.
Nanoparticles of Pt were successfully electrodeposited onto polycarbazole (PCz) film on a stainless steel (SS‐PCz‐Pt) by chronocoulometry (0.2 C). For comparative purposes, Pt particles were deposited into stainless steel (SS‐Pt) under the same condition. Fourier transform infrared spectroscopy (FT‐IR) results confirmed PCz exists in the SS‐PCz‐Pt composite electrode. X‐ray photoelectron spectroscopy (XPS) results indicated that PCz of SS‐PCz can interact easily with Pt particles. The crystalline behavior and morphology of SS‐PCz‐Pt and SS‐Pt were determined by X‐ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and Transmission Electron Microscopy (TEM). The TEM results indicated that Pt particles disperse more uniformly into the nanosheets of polycarbazole than those of SS film. Catalytic activity and stability for the oxidation of methanol were studied by using cyclic voltammetry and chronoamperometry. A high catalytic current for methanol oxidation (8.04 mA cm?2 mg?1) was found for the SS‐PCz‐Pt electrode in comparison to SS‐Pt electrode (5.01 mA cm?2 mg?1) at about 0.6 V (vs. Ag/AgCl).  相似文献   

11.
《Electroanalysis》2017,29(12):2839-2846
In this paper, a glassy carbon electrode (GCE) was modified with polyzincon. The modified electrode was used as a simple, inexpensive and highly sensitive electrochemical sensor for the determination of organophosphorus pesticide fenitrothion. To fabricate the electrochemical sensor, GCE was immersed in 0.10 mmol L−1 zincon solutions at pH 7.0 and then successively scanned between −1.00 to 2.20 V (vs . Ag/AgCl) at a scan rate of 70 mV s−1 for six cycles. The morphology and structure of the polyzincon were studied with atomic force microscopy and scanning electron microscopy. A comparison of the electrochemical behavior of fenitrothion on the unmodified and polyzincon modified‐GCE showed that in the modified electrode not only the oxidation peak current increased, but also the overpotential shifted to lower one. The experimental conditions such as sample solution pH, accumulation potential, and time were optimized. The differential pulse voltammetric responses of fenitrothion at potential about −0.60 V was used for the determination of fenitrothion. The peak current increased with increasing the concentration of fenitrothion in the range of 5 to 8600 nmol L−1 with a detection limit of 1.5 nmol L−1. Finally, the electrochemical sensor was used for the analysis of fenitrothion in water and fruit samples.  相似文献   

12.
《Electroanalysis》2004,16(4):268-274
An amperometric method for the determination of the neurotoxic amino acid β‐N‐oxalyl‐L ‐α,β‐diaminopropionic acid (β‐ODAP) using a screen printed carbon electrode (SPCE) is reported. The electrode material was bulk‐modified with manganese dioxide and used as a detector in flow injection analysis (FIA). The enzyme glutamate oxidase (GlOx) was immobilized in a Nafion‐film on the electrode surface. The performance of the biosensor was optimized using glutamate as an analyte. Optimum parameters were found as: operational potential 440 mV (vs. Ag/AgCl), flow rate 0.2 mL min?1, and carrier composition 0.1 mol L?1 phosphate buffer (pH 7.75). The same conditions were used for the determination of β‐ODAP. The signal was linear within the concentration range 53–855 μmol L?1 glutamate and 195–1950 μmol L?1 β‐ODAP. Detection limits (as 3σ value) for both analytes were 9.12 and 111.0 μmol L?1, respectively, with corresponding relative standard deviations of 3.3 and 4.5%. The biosensor retained more than 73% of its activity after 40 days of on‐line use.  相似文献   

13.
《Electroanalysis》2017,29(11):2526-2532
An amperometric bi‐enzyme sensor for detection of organophosphorus pesticides (OPs) with phenolic leaving groups, which are not electroactive, is presented in this work. The biosensing platform was created by a simple, controllable, and reproducible one‐step electrodeposition onto the surface of a glassy carbon electrode of a chitosan bionanocomposite with entrapped carboxylated multi walled carbon nanotubes, organophosphorus hydrolase (OPH), and horseradish peroxidase (HRP). The OPs determination involved a sequence of OPH and HRP‐catalyzed reactions resulting in phenolic radicals production, which were quantified by registering the current of their reduction at a potential of −50 mV vs. Ag, AgCl/KClsat.The developed sensor was applied for the determination of prothiofos, as an example. At optimized conditions (pH 7.25 and H2O2 concentration 200 μmol L−1), a LOD as low as 0.8 μmol L−1 was attained, while the linear concentration range was extended from 2.64 μmol L−1 up to 35 μmol L−1. The main advantage of the proposed bi‐enzyme sensor is its selectivity toward the OPs with phenolic leaving groups, excluding the interference of the nitrophenyl‐substituted OPs.  相似文献   

14.
We describe the development, fabrication, and characterization of a novel two‐electrode nanosensor contained within the tip of a needle‐like probe. This sensor consists of two, vertically aligned, carbon structures which function as individual electrodes. One of the carbon structures was modified by silver electrodeposition and chlorination to enable it to function as a pseudo‐reference electrode. Performance of this pseudo‐reference electrode was found to be comparable to that of commercially available Ag/AgCl reference electrodes. The unmodified carbon structure was employed as a working electrode versus the silver‐plated carbon structure to form a two‐electrode sensor capable of characterizing redox‐active analytes. The nanosensor was demonstrated to be capable of electrochemically characterizing the redox behavior of para‐aminophenol (PAP) in both bulk solutions and microenvironments. PAP was also measured in cell lysate to show that the nanosensor can detect small concentrations of analyte in heterogenous environments. As the working and reference electrodes are contained within a single nanoprobe, there was no requirement to position external electrodes within the electrochemical cell enabling analysis within very small domains. Due to the low‐cost manufacturing process, this nanoprobe has the potential to become a unique and widely accessible tool for the electrochemical characterization of microenvironments.  相似文献   

15.
A mixed‐valence cluster of cobalt(II) hexacyanoferrate and fullerene C60‐enzyme‐based electrochemical glucose sensor was developed. A water insoluble fullerene C60‐glucose oxidase (C60‐GOD) was prepared and applied as an immobilized enzyme on a glassy carbon electrode with cobalt(II) hexacyanoferrate for analysis of glucose. The glucose in 0.1 M KCl/phosphate buffer solution at pH = 6 was measured with an applied electrode potential at 0.0 mV (vs Ag/AgCl reference electrode). The C60‐GOD‐based electrochemical glucose sensor exhibited efficient electro‐catalytic activity toward the liberated hydrogen peroxide and allowed cathodic detection of glucose. The C60‐GOD electrochemical glucose sensor also showed quite good selectivity to glucose with no interference from easily oxidizable biospecies, e.g. uric acid, ascorbic acid, cysteine, tyrosine, acetaminophen and galactose. The current of H2O2 reduced by cobalt(II) hexacyanoferrate was found to be proportional to the concentration of glucose in aqueous solutions. The immobilized C60‐GOD enzyme‐based glucose sensor exhibited a good linear response up to 8 mM glucose with a sensitivity of 5.60 × 102 nA/mM and a quite short response time of 5 sec. The C60‐GOD‐based glucose sensor also showed a good sensitivity with a detection limit of 1.6 × 10‐6 M and a high reproducibility with a relative standard deviation (RSD) of 4.26%. Effects of pH and temperature on the responses of the immobilized C60‐GOD/cobalt(II) hexacyanoferrate‐based electrochemical glucose sensor were also studied and discussed.  相似文献   

16.
We have fabricated a highly sensitive, simple and label‐free single polypyrrole (Ppy) nanowire based conductometric/chemiresistive DNA sensor. The fabrication was optimized in terms of probe DNA sequence immobilization using a linker molecule and using gold‐thiol interaction. Two resultant sensor designs working on two different sensing mechanisms (gating effect and work function based sensors) were tested to establish reliable sensor architecture with higher sensitivity and device‐to‐device reproducibility. The utility of the work function based configuration was demonstrated by detecting 19 base pair (bp) long breast cancer gene sequence with single nucleotide polymorphism (SNP) discrimination with high sensitivity, lower detection limit of ∼10−16 M and wide dynamic range (∼10−16 to 10−11 M) in a small sample volume (30 µL). To further demonstrate the utility of the DNA sensor for detection of target sequences with different number of bases, targets with 21 and 36 bases were detected. These sequences have implications in environmental sample analysis or metagenomics. Sensor response showed increase with the number of bases in the target sequence. For long sequence (with 36 bases), effect of DNA alignment on sensor performance was studied.  相似文献   

17.
A microelectrode array microprobe with a choline sensing site and an on‐probe reference electrode was constructed by depositing permselective polymer films and choline oxidase (ChOx) on one microelectrode, and iridium oxide (IrOx) on another, both of which were coated previously with a nanostructured Pt deposit. Scanning electron microscopy (SEM) of the nanostructured Pt layer revealed a unique pillar‐like, “nanograss” structure. Polyphenylenediamine (PPD) and Nafion were coated sequentially on the working (i. e. sensing) electrode surface to serve as the permselective polymer films. The microsensor exhibited high sensitivity to choline (123±13 μA mM?1 cm?2), low detection limit (3.2±0.8 μM), and fast response time (3–5 s). The choline sensor also was tested at physiological concentrations of electroactive interfering species common to brain extracellular fluid (i. e. ascorbic acid, dopamine, DOPA, and DOPAC) and showed excellent selectivity. Selectivity likely was aided by the relatively low potential of 0.35 V vs. IrOx that was made possible by the enhanced H2O2 electrooxidation activity of the underlying nanostructured Pt‐coated working electrode. Thus, Pt “nanograss” appears to be an excellent electrode surface modification for creation of high performance electroenzymatic biosensors.  相似文献   

18.
《Electroanalysis》2017,29(2):387-391
Electrodeposition of functional metal surfaces has received great attention because of their useful applications. Recently, interesting electrodeposition behavior of Pt at −0.8 V (vs. Ag/AgCl) was reported, where underpotential deposited H (Hupd) layers played a unique role in the electrodeposition. Here, we report the effect of anionic electrolytes and precursor concentrations on the electrochemical deposition behavior of Pt. Depending on these two experimental parameters, two distinct Pt structures, monolayer Pt films and Pt spheres, were electrodeposited at −0.8 V. In addition to the underpotential deposited H (Hupd) layers formed at −0.8 V, the adsorption of Cl also plays a significant role in determining the electrodeposited Pt structures. When the PtCl42− concentration was low and the Cl concentration was high enough for the adsorption of PtCl42− to be blocked by the Hupd and Cl layers, monolayer Pt films were electrodeposited. Otherwise, further electrodeposition of Pt spheres over the monolayer Pt films occurred. The effect of other halide ion adsorption and the controlled growth of Pt spheres during the Pt electrodeposition were also investigated. The electrochemical deposition behavior of Pt demonstrated in this work provides insight into the fabrication of functional Pt surfaces.  相似文献   

19.
《Electroanalysis》2017,29(2):587-594
A sensitive and selective hydrazine sensor was developed by β‐cyclodextrin modified palladium nanoparticles decorated reduced graphene oxide (PdNPs‐β‐CD/rGO) nanocomposite. The PdNPs‐β‐CD/rGO hybrid material was prepared by simple electrochemical method. The hydrophobic cavity of β‐CD ineracts with palladium nanoparticles by hydrophobic interaction and further it is uniformly assembled on the rGO surface through hydrogen bond formation, which is clearly confirmed by FT‐IR, FESEM and TEM. The high electrocatalytic activity of hydrazine oxidation was observed at −0.05 V (vs. Ag/AgCl) on PdNPs‐β‐CD/rGO modified electrode; due to the excellent stabilization, high catalytic activity and large surface area of the PdNPs‐β‐CD/rGO composite. The PdNPs‐β‐CD/rGO fabricated hydrazine sensor exhibited an excellent analytical performance, including high sensitivity (1.95 μA μM−1 cm−2), lower detection limit (28 nM) and a wide linear range (0.05 to 1600 μM). We also demonstrated that the PdNPs‐β‐CD/rGO nanocomposite modified electrode is a highly selective and sensitive sensor towards detection of hydrazine among the various interfering species. Hence, the proposed hydrazine sensor is able to determine hydrazine in different water samples.  相似文献   

20.
《Electroanalysis》2006,18(9):918-927
Uric acid (UA) sensor based on molecularly imprinted polymer‐modified hanging mercury drop electrode was developed for sensitive and selective analysis in aqueous and blood serum samples. The uric acid‐imprinted polymer was prepared from melamine and chloranil and coated directly onto the surface of a hanging mercury drop electrode, under charge‐transfer interactions at +0.4 V (vs. Ag/AgCl), in model 303A electrode system connected with a polarographic analyzer/stripping voltammeter (PAR model 264A). The binding event of uric acid was detected in the imprinted polymer layer through differential pulse, cathodic stripping voltammetry (DPCSV) at optimized operational conditions [accumulation potential +0.4 V (vs. Ag/AgCl), accumulation time 120 s, pH 7.0, scan rate 10 mV s?1, pulse amplitude 25 mV]. The limit of detection for UA was found to be 0.024 μg mL?1 (RSD=0.64%, S/N=3). Under the optimized operational conditions, the sensor was able to differentiate between uric acid and other closely structural‐related compounds and interfering substances. Ascorbic acid (AA), a major interferent in UA estimation, was not adsorbed on the surface of sensor electrode. The present sensor is, therefore, UA‐selective at all concentrations of AA present in human blood serum samples. The précised and accurate quantification of UA have been made in the dilute as well as concentrated regions varying within limits 0.1–4.0 and 9.8–137.0 μg mL?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号