首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《中国化学》2017,35(7):1098-1108
In this study, chemical reduced graphene‐silver nanoparticles hybrid (AgNPs @CR‐GO ) with close‐packed AgNPs structure was used as a conductive matrix to adsorb enzyme and facilitate the electron transfer between immobilized enzyme and electrode. A facile route to prepare AgNPs @CR‐GO was designed involving in β ‐cyclodextrin (β ‐CD ) as reducing and stabilizing agent. The morphologies of AgNPs were regulated and controlled by various experimental factors. To fabricate the bioelectrode, AgNPs @CR‐GO was modified on glassy carbon electrode followed by immobilization of glucose oxidase (GOx ) or laccase. It was demonstrated by electrochemical testing that the electrode with close‐packed AgNPs provided high GOx loading (Γ =4.80 × 10−10 mol•cm−2) and fast electron transfer rate (k s=5.76 s−1). By employing GOx based‐electrode as anode and laccase based‐electrode as cathode, the assembled enzymatic biofuel cell exhibited a maximum power density of 77.437 μW •cm−2 and an open‐circuit voltage of 0.705 V.  相似文献   

2.
An electrochemical creatinine sensor based on a molecularly imprinted polymer (MIP)‐modified sol‐gel film on graphite electrode was developed. The surface coating of MIP over sol‐gel was advantageous to obtain a porous film with outwardly exposed MIP cavities for unhindered selective rebinding of creatinine from aqueous and biological samples. A fast differential pulse, cathodic stripping voltammetric response of creatinine can be obtained after being preanodized the sensor in neutral medium containing appropriate amount of creatinine at +1.8 V versus SCE for 120 s. A linear response over creatinine concentration in the range of 1.23 to 100 μg mL?1 was exhibited with a detection limit of 0.37 μg mL?1 (S/N=3).  相似文献   

3.
《Electroanalysis》2017,29(12):2793-2802
In this work, SiO2/Nb2O5/ZnO prepared by the sol‐gel processing method was used as substrate base for immobilization of the protoporphyrin‐IX ion. Iron(III) ion was inserted into the porphyrin ring (SiNbZn‐PPFe). A simple square wave voltammetry method based on a composite sensor carbon paste electrode of this material,designed as EPC‐SiNbZn‐PPFe, was developed and validated successfully for the determination of L‐tryptophan (Trp). The optimum conditions were obtained by using sensor modified with 18.00 mg SiNbZn‐PPFe material, 12.00 mg graphite powder and 6.0 μL mineral oil and phosphate buffer 0.3 mol L−1 pH 7.0. The sensitivity of the sensor was found to be 0.523 AL mol −1, linear range from 10 to 70 μmol L−1 and limit of detection of 3.28 μmol L−1. Therefore, the developed method was successfully applied for the Trp determination in real samples of pharmaceutical formulation and can be used for routine quality control pharmaceutical formulations containing Trp.  相似文献   

4.
《Electroanalysis》2018,30(8):1781-1790
An useful electrochemical sensing approach was developed for epinephrine (EP) detection based on graphene quantum dots (GQDs) and laccase modified glassy carbon electrodes (GC). The miniature GC biosensor was designed and constructed via the immobilization of laccase in an electroactive layer of the electrode coated with carbon nanoparticles. This sensing arrangement utilized the catalytic oxidation of EP to epinephrine quinone. The detection process was based on the oxidation of catecholamine in the presence of the enzyme – laccase. With the optimized conditions, the analytical performance demonstrated a high degree of sensitivity −2.9 μA mM−1 cm−2, selectivity in a broad linear range (1–120×10−6 M) with detection limit of 83 nM. Moreover, the method was successfully applied for EP determination in labeled pharmacological samples.  相似文献   

5.
《Electroanalysis》2018,30(1):154-161
Trace amount of arsenate in the presence of arsenite was determined directly on pencil graphite electrode modified by graphene oxide and zirconium (Zr−G−PGE). The layer‐by‐layer modification of PGE was characterized by scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Key point of the developed method was quick adsorption of arsenate than arsenite on the Zr−G−PGE. In optimal conditions, the Zr−G−PGE was applied for determination of arsenate using differential pulse voltammetry in a linear range 0.10–40.0 μg L−1 with a limit of determination of 0.12±0.01 μg L−1. The sensitivity of the electrode was 1.36±0.07 μA/μg L−1. The modified electrode was used to measure the concentration of arsenate in the river water. A recovery test was performed by introducing 10 μg L−1 arsenate into the rivers water in order and acceptable data of average recovery of 101.2 % was obtained. From the experimental results, the as‐prepared electrode can provide a satisfactory method for direct determination of arsenate in real samples.  相似文献   

6.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

7.
《Electroanalysis》2017,29(7):1691-1699
The simultaneous voltammetric determination of melatonin (MT) and pyridoxine (PY) has been carried out at a cathodically pretreated boron‐doped diamond electrode. By using cyclic voltammetry, a separation of the oxidation peak potentials of both compounds present in mixture was about 0.47 V in Britton‐Robinson buffer, pH 2. The results obtained by square‐wave voltammetry allowed a method to be developed for determination of MT and PY simultaneously in the ranges 1–100 μg mL−1 (4.3×10−6–4.3×10−4 mol L−1) and 10–175 μg mL−1 (4.9×10−5–8.5×10−4 mol L−1), with detection limits of 0.14 μg mL−1 (6.0×10−7 mol L−1) and 1.35 μg mL−1 (6.6×10−6 mol L−1), respectively. The proposed method was successfully to the dietary supplements samples containing these compounds for health‐caring purposes.  相似文献   

8.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

9.
《Electroanalysis》2017,29(11):2579-2590
In this study, an electrochemical sensor was developed and used for selective determination of bisfenol‐A (BPA) by integrating sol‐gel technique and multi‐walled carbon nanotubes (MWCNTs) modified paste electrode. BPA bounded by covalently to isocyanatopropyl‐triethoxy silane (ICPTS) was synthesized as a new precursor (BPA‐ICPTS) and then BPA‐imprinted polymer (BPA‐IP) sol‐gel was prepared by using tetramethoxysilane (TMOS) and BPA‐ICPTS. Non‐imprinted polymer (NIP) sol‐gel was obtained by using TMOS and (3‐Aminopropyl) triethoxysilane. Both BPA‐IP and NIP sol‐gels were characterized by nitrogen adsorption‐desorption analysis, FTIR, SEM, particle size analyzer and optical microscope. Carbon paste sensor electrode was fabricated by mixing the newly synthesized BPA‐IP with MWCNTs, graphite powder and paraffin oil. The electrochemical characterization of the sensor electrode was achieved with cyclic and differential pulse voltammetric techniques. The response of the developed sensor under the most proper conditions was linear in BPA concentration range from 4.0×10−9 to 1.0×10−7 mol L−1 and 5.0×10−7 to 5.0×10−5 mol L−1 and the detection limit was 4.4×10−9 mol L−1. The results unclosed that the proposed sensor displayed high sensitivity and selectivity, superior electrochemical performance and rapid response to BPA.  相似文献   

10.
Electrodeposition on the graphite electrode under conditions of controlled current in a flow-through mode, followed by electrothermal atomic absorption spectrometry, is proposed for the determination of cadmium. After electrolysis in a microcell of 2.6 μl volume, deposited metal was dissolved in 40 μl 0.2 mol l−1 HNO3 and the whole volume was direct injected into the atomizer. Using this on-line arrangement and electrodeposition from 1.75 ml of sample solution detection limit of 25 ng l−1 Cd was attained. The method was applied for the determination of cadmium in a real sample of seawater.  相似文献   

11.
《Electroanalysis》2017,29(11):2565-2571
MoS2 nanoflakes were prepared by exfoliating commercial MoS2 powders with the assistance of ultrasound and graphene foam was synthesized by chemical vapor deposition using nickel foam as the template. MoS2‐graphene hybrid nanosheets were developed through the combination of MoS2 nanoflakes and graphene nanosheets by ultrasonic dispersion. The hybrid nanosheets were sprayed onto the ITO coated glass, which acts as an electrode for the simultaneously electrochemical determination of levodopa and uric acid. The MoS2‐graphene hybrid nanosheets were characterized by scanning electron microscopy, X‐ray diffraction and Raman spectroscopy. The results show that the hybrid nanosheets are composed of MoS2 and graphene with a sheet‐like morphology. The sensitivity of the electrode for levodopa and uric acid is 0.36 μA μM−1 and 0.39 μA μM−1, respectively. The electrode also shows low limit of detection, good selectivity, reproducibility and stability. And it is potential for use in clinical research.  相似文献   

12.
《Electroanalysis》2017,29(10):2348-2357
This work describes a simple preparation of 1‐diazo‐2‐naphthol‐4‐sulfonic acid (1,2,4‐acid) and multiwalled carbon nanotubes (MWCNTs) modified glassy carbon electrode (GCE) for the simultaneous detection of Co(II) and Cu(II). MWCNTs, with their good conductivity and large surface area, were drop‐casted onto the surface of the GCE prior to the electrodeposition of 1,2,4‐acid, a metal chelating agent. Co(II) and Cu(II) were simultaneously measured by differential pulse anodic stripping voltammetry (DPASV) in a batch system. Under optimum conditions, the linear range of Co(II) was between 0.10 and 2.5 μg mL−1 with an LOD of 80 ng mL−1. Two linear ranges were obtained for Cu(II), 0.0050 to 0.030 μg mL−1 and 0.040 to 0.25 μg mL−1,with an LOD of 2.4 ng mL−1. The method offered a high operational stability for up to 52 measurements (RSD=3.4 % for Co(II) and 2.6 % for Cu(II)) and good reproducibility (RSD=1.2 % for Co(II) and 1.7 % for Cu(II)). In the simultaneous detection of Co(II) and Cu(II), there was no effect from common interferences found in wastewater. The method was successfully applied in real water samples with good recoveries (88.2±0.8 to 102.0±0.8 % for Co(II) and 96.5±0.4 to 103.8±0.9 % for Cu(II)) and the results were in good agreement with those obtained from inductively coupled plasma optical emission spectrometry (ICP‐OES) (P >0.05).  相似文献   

13.
《Electroanalysis》2017,29(4):1031-1037
This paper describes the synthesis and characterization of gold nanoparticles stabilized in β‐cyclodextrin (AuNP‐CD), which were applied as a platform in the immobilization of laccase (LAC). The AuNP‐CD‐LAC were used in the construction of a new biosensor for rutin determination by square‐wave voltammetry (SWV). Under optimized conditions, the calibration curve showed a linear range for rutin of 0.30 to 2.97 μmol L−1, with a limit of detection of 0.17 μmol L−1. The biosensor demonstrated satisfactory repeatability and electrode‐to‐electrode repeatability (with relative standard deviations of 5.6 and 6.0 %, respectively) and good stability. The biosensor was successfully applied in the determination of rutin in different pharmaceutical samples.  相似文献   

14.
《Electroanalysis》2018,30(8):1659-1668
PAMAM dendrimer/reduced graphene oxide nanocomposite modified pencil graphite electrode (PAMAM/RGO/PGE) was used to fabricate an electrochemical DNA biosensor for determination of Rituxan (RTX) at low concentrations, for the first time. The fabricated biosensor was characterized with FE‐SEM, EIS, and CV techniques. The ds‐DNA/PAMAM/RGO/PGE was used as a working electrode to study the interaction between the RTX and salmon sperm ds‐DNA by DPV technique. Because of the interaction between the drug and DNA leads to a decrease in the guanine oxidation peak current, it was used as an indicator for the determination of the RTX. Under the optimized experimental conditions, a wide linear relationship between RTX concentration and guanine signal was obtained within the range of 7.0 to 60.0 μmol L−1 and 60.0 to 300.0 μmol L−1 with a low detection limit (0.56 μmol L−1). To clarify the interaction mechanism between the RTX and the ds‐DNA, DPV and UV‐Vis measurements were used. The reproducibility, stability, and performance of the constructed biosensor was examined by quantitative measuring RTX in pharmaceutical and human serum samples with good precision (RSD; 2.0–6.0 %) and acceptable recoveries (100.04–101.95 %).  相似文献   

15.
Present work displays the preparation of an electrochemical biosensor using a conjugated polymer and laccase enzyme for catechol quantification in samples. The biosensing system is based on an enzyme immobilization on polymer modified graphite transducer surface. For that purpose, a random conjugated polymer, thienothiophene‐benzoxadiazole‐alt‐benzodithiophene (BOTT), was coated onto a graphite electrode surface via drop casting method followed by immobilization of a biomolecule (laccase) for sensing experiments. Herein, for the first time, we proposed a BOTT polymer as an inexpensive and effective way to fabricate highly sensitive and fast response biosensors. The proposed sensing system possessed superior properties with 0.38 μM limit of detection and 110.81 μA mM?1 sensitivity. Furthermore, cyclic voltammetry and scanning electron microscopy techniques were used to examine the surface modifications. The proposed system could be useful for many future studies for catechol quantification in environmental samples.© 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2333–2339  相似文献   

16.
A new and simple photoelectrochemical (PEC) sensor using a glassy carbon electrode (GCE) modified with bismuth vanadate (BiVO4) nanoparticles and dihexadecyl phosphate (DHP) film was useful for acetaminophen (AC) determination. In 0.2 mol L−1 phosphate buffer (pH=9), the GCE without modification exhibited the smaller photocurrent (0.86 μA) when compared with GCE modified with 1.0 mg mL−1 or 2.0 mg mL−1 BiVO4 nanoparticles suspension (5.9 and 34 μA, respectively). Based on the photocurrent signal generated through the interaction between GCE, BiVO4 and the energy of visible light a chronoamperometric method for AC determination was developed. The AC linear range concentration from 0.099 to 0.99 μmol L−1 and limits of detection and quantification of 0.027 and 0.091 μmol L−1, respectively, was obtained. The proposed method was applied to the AC determination in commercial drugs and tap water with satisfactory accuracy and precision. Moreover, the PEC construction was easy and had a short response time, which might confer higher sample throughput for the method.  相似文献   

17.
《Electroanalysis》2018,30(1):119-127
In the present paper a voltammetric biosensor based on platinum electrode and polypyrrole / uricase / graphene composite, named Pt‐PPy/UOx/Grap has been successfully prepared and validated for uric acid (UA) determination in real samples. The electrochemical behavior has been evaluated by employing cyclic voltammetric. The charge transfer coefficient, α, and the charge transfer rate constant, κs, for electron transfer between PPy/UOx/Grap and Pt were calculated as 0.71, in average, and 48.3 s−1, respectively. Under optimized conditions for the composite (2.5 U mL−1 of UOx, 0.3 mg mL−1 of Grap and 2.9 mmol L−1 of pyrrole) and for the analysis (pH 7.0 in 0.1 mol L−1 phosphate buffer) the method was validated for UA determination at human urine and showed good linearity to UA from 2 up to 24 nmol L−1 (r=0.993) with limits of detection and quantification of 0.541 and 1.805 nmol L−1, respectively. The results obtained for the UA determination at urine presented a relative error lower than 5 %, showing the good performance of the method developed and potential application in UA clinical analysis.  相似文献   

18.
《Electroanalysis》2004,16(19):1592-1597
The electrochemical redox processes of pyridoxine hydrochloride (VB6) at a poly(methylene blue) film modified glass carbon electrode (PMBE) in a phosphate buffer solution (PBS, pH 8.0) were studied by cyclic voltammetry. The VB6 electrode reaction with quasi‐reversible characteristics was diffusion‐controlled at low scan rates and adsorption‐controlled at high scan rates. The anodic peak current positive to 0.6 V (vs. SCE) was found to be proportional to the concentration of VB6 in the range of 0.010 to 1.03 mg?mL?1 with a detection limit of 1.34 μg mL?1. Fluorescence and UV‐vis absorption spectroelectrochemical measurements suggest that the pyridine ring was not destroyed over the potential range from ?0.8 to 1 V (vs. SCE), and the electrocatalytic generation of pyridoxal was anodically started at 0.57 V.  相似文献   

19.
《Electroanalysis》2018,30(2):274-282
Reduced Graphene oxide/ZnO nanoflowers ( rGO/ZnO‐NFs ) composite has been synthesized in‐situ using asymmetric Zn complex ( 1 ) as a single‐source molecular precursor (SSMP) with GO at 150 °C. The rGO/ZnO‐NFs composite was characterized by PXRD, UV‐vis, SEM, EDX mapping, TEM and SAED pattern to confirm its purity and morphology. The rGO/ZnO‐NFs composite shows uniform distribution of nanoflowers on graphene sheets. The modified glassy carbon electrode ( GCE ) was fabricated by drop wise layering of the rGO/ZnO‐NFs composite at the surface of the GCE without using binder. The binder free modified electrode ( GCE‐rGO/ZnO ) was explored for detection of nitroaromatics such as p‐nitro‐phenol ( p ‐NP ), 2,4‐dinitrophenol ( 2,4‐DNP ), 2,4‐dinitrotoluene ( 2,4‐DNT ) and 2,4,6‐trinitrophenol ( 2,4,6‐TNP ). The fabricated sensor showed remarkable response for the both toxicants and explosives. The LOD, sensitivity and linear range for the studied toxicants and explosives were found to be in a good range: p ‐NP= 0.93 μM, 240 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4‐DNP= 6.2 μM, 203 μA mM−1 cm−2 and 0.1–0.9 mM; 2,4‐DNT= 10 μM, 371 μA mM−1 cm−2 and 0.2–0.9 mM; 2,4,6‐TNP= 16 μM, 514 μA mM−1 cm−2 and 0.2–0.9 mM, respectively.  相似文献   

20.
Fungal laccase (Lc) from the basidiomycete Trametes hirsuta was immobilized on top of a carbon ceramic electrode using physical absorption. Direct, unmediated heterogeneous electron transfer between Lc and the carbon ceramic electrode (CCE) under aerobic conditions was shown. The bioelectrocatalytic reduction of oxygen on Lc‐CCE started at about 430 mV vs. Ag|AgCl|KClsat at pH 3.5 and moved with about 57 mV in the cathodic region per pH unit. The Lc‐modified CCE was then used as a biosensing detection element in a single line flow injection system for the amperometric determination of a variety of phenolic substrates of the enzyme. The experimental conditions were studied and optimized for catechol serving as a model compound. Statistical aspects were applied and the sensor characteristics and Michaelis‐Menten constants of the investigated phenolic compounds were calculated and compared with those obtained for solid graphite electrodes modified with Trametes hirsuta laccase. The results showed that the CCE based biosensor in comparison with the solid graphite based biosensor offers a lower detection limit, a wider linear dynamic range, and excellent operational stability with no sensor passivation, indicating that the sol–gel lattice improves the electrochemical behavior of the biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号