首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

2.
An electrochemical DNA sensor was constructed using single‐walled carbon nanotubes (SWNTs) attached to a self‐assembled monolayer of 11‐amino‐1‐undecanethiol on a gold surface. The voltammetric peak of methylene blue (MB), which interacts with the DNA guanine bases specifically, was used to follow the DNA hybridization process. After DNA hybridization with its complementary DNA strand, the MB electrochemical signal response decreased and the change in MB signal response was used as the basis for the electrochemical sensing of DNA hybridization. The as described DNA sensor demonstrated to have good stability, selectivity, a linear response over the DNA concentration range from 100 to 1,000 nM and a limit of detection of 7.24 nM.  相似文献   

3.
《Electroanalysis》2004,16(20):1667-1672
Multi‐walled carbon nanotubes (MWNTs) were used as nanowires, which combined DNA molecules to a carbon paste electrode (CPE). The attachment of MWNT on the electrode surface was controlled by a hybridization assay between adenine and thymine containing oligonucleotides. The appearance of guanine oxidation signal after hybridization with target DNA greatly simplified the specific sequence DNA detection mechanism. Combination of sidewall‐ and end‐functionalization of MWNT provided a significant enhancement in the voltammetric signal of guanine oxidation in comparison with the signals obtained from only end‐oxidized MWNT modified CPE and a bare CPE. A control experiment involving adenine containing polynucleotide (poly(A)) instead of adenine probe modified MWNT was performed. The effect of target and noncomplementary DNA concentration on the guanine signal was also monitored. Discrimination against single‐base mismatch and noncomplementary DNA was achieved by surfactant containing washing solution. The promising conductivity of carbon nanotubes, and the creation of a larger surface area for DNA immobilization by sidewall‐ and end‐oxidation of MWNT provided a detection limit down to 10 pg/mL, which is compatible with the demand of the genetic tests.  相似文献   

4.
A multiwalled carbon nanotubes (CNT)‐chitosan (CHIT) modified pencil graphite electrode (CNT‐CHIT/PGE) was developed for the first time herein for electrochemical monitoring of the interaction of an anticancer drug, mitomycin C (MC) and DNA. The characterization of unmodified PGE, CHIT/PGE, CNT/PGE and CHIT‐CNT/PGE were performed by scanning electron microscopy and cyclic voltammetry techniques. The oxidation signals of MC and guanine were measured before and after interaction at the surface of CNT‐CHIT/PGEs using differential pulse voltammetry. Electrochemical impedance spectroscopy technique was also successfully utilized for monitoring of the interaction process at the surface of CNT‐CHIT/PGEs in different interaction times.  相似文献   

5.
《Electroanalysis》2003,15(7):667-670
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probes with a label‐free protocol is described. The detection of PNA‐DNA and DNA‐DNA hybridizations were accomplished based on the oxidation signal of guanine by using differential pulse voltammetry (DPV) at carbon paste electrode (CPE). It was observed that the oxidation signals of guanine obtained from the PNA and DNA probe modified CPEs were higher than those obtained from the PNA‐DNA and DNA‐DNA hybrid modified CPEs due to the accessible unbound guanine bases. The detection of hybridization between PNA probe and point mutation containing DNA target sequences was clearly observed due to the difference of the oxidation signals of guanine bases, because the point mutation was guanine nearly at the middle of the sequence. The effect of the DNA target concentration on the hybridization signal was also observed. The PNA probe was also challenged with excessive and equal amount of noncomplementary DNA and also mixtures of point mutation and target DNA.  相似文献   

6.
In this study, SnO2 nanoparticles (SNPs)-poly(vinylferrocenium) (PVF+) modified single-use graphite electrodes were developed for electrochemical monitoring of DNA hybridization. The surfaces of polymer modified and polymer-SNP modified pencil graphite electrodes (PGEs) were firstly characterized by using SEM analysis. The electrochemical behaviours of these electrodes were also investigated using the differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. The polymer-SNP modified PGEs were then tested for the electrochemical sensing of DNA based on the changes at the guanine oxidation signals. Experimental parameters, such as; different modifications in DNA oligonucleotides, DNA probe concentrations were examined to obtain more sensitive and selective electrochemical signals for nucleic acid hybridization. After optimization studies, DNA hybridization was investigated in the case of complementary of hepatitis B virus (HBV) probe, mismatch (MM), and noncomplementary (NC) sequences.  相似文献   

7.
《Electroanalysis》2017,29(10):2292-2299
In this present study, single‐walled carbon nanotubes (SWCNT) modified disposable pencil graphite electrodes (SWCNT‐PGEs) were developed for the electrochemical monitoring of anticancer drug, and its interaction with double stranded DNA (dsDNA). Under this aim, SWCNT‐PGEs were applied for the first time in the literature to analyse of 6‐Thioguanine (6‐TG), and also to investigate its interaction with DNA by voltammetric and impedimetric methods. The surface morphologies of PGE and SWCNT‐PGE were explored using scanning electron microscopy (SEM) and electrochemical characterization of unmodified/modified electrodes was performed by cyclic voltammetry (CV). Experimental parameters; such as, the concentration of 6‐TG and its interaction time with dsDNA were optimized by using differential pulse voltammetry (DPV). Additionally, the interaction of 6‐TG with dsDNA was studied in case of different interaction times by electrochemical impedance spectroscopy (EIS) in contrast to voltammetric results. The detection limit of 6‐TG was found to be 0.25 μM by SWCNT‐PGE.  相似文献   

8.
A novel DNA biosensor has been fabricated for the detection of DNA hybridization based on layer‐by‐layer (LBL) covalent assembly of gold nanoparticles (GNPs) and multiwalled carbon nanotubes (MWCNTs). The stepwise LBL assembly process was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated doxorubicin, and the factors influencing the performance of the DNA hybridization was investigated in detail. The signal was linearly changed with target DNA concentration increased from 0.5 to 0.01 nM, and had a detection limit of 7.5 pM (signal/noise ratio of 3). In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

9.
《Electroanalysis》2017,29(5):1350-1358
In our study, graphene oxide (GO) modified graphite electrodes were used for sensitive and selective impedimetric detection of miRNA. After chemical activation of pencil graphite electrode (PGE) surface using covalent agents (CA), GO modification was performed at the surface of chemically activated PGE. Then, CA‐GO‐PGEs were applied for impedimetric miRNA detection. The microscopic and electrochemical characterization of CA‐GO‐PGEs was performed by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The optimization of experimental conditions; such as GO concentration, DNA probe concentration and miRNA target concentration was performed by using EIS technique. After the hybridization occurred between miRNA‐34a RNA target and its complementary DNA probe, the hybrid was immobilized onto the surface of CA‐GO‐PGEs. Then, the impedimetric detection of miRNA‐DNA hybridization was performed by EIS. The selectivity of our assay was also tested under the optimum experimental conditions.  相似文献   

10.
The electrochemical investigation of the interaction between the anticancer drug mitomycin C (MC) and DNA was described using a single‐walled carbon nanotube (SWCNT)/poly(vinylferrocenium) (PVF+) modified pencil graphite electrode (PGE). The electrochemical oxidation signals of guanine were monitored before and after the interaction between MC and DNA by using differential pulse voltammetry. The effects of DNA and MC concentration and MC interaction time were examined based on the electrode response. Cyclic voltammetry and electrochemical impedance spectroscopy were used for the characterization of SWCNT/PVF+ modified and PVF+ modified PGEs. The detection limit corresponded to 625 ng/mL for MC using calf thymus double‐stranded DNA immobilized SWCNT/PVF+ modified PGE.  相似文献   

11.
The application of multiwalled carbon nanotube (MWCNT) based screen printed graphite electrodes (SPEs) was explored in this study for the electrochemical monitoring of DNA hybridization related to specific sequences on Hepatitis B virus (HBV) DNA. After the microscopic characterization of bare MWCNT‐SPEs and DNA immobilized ones was performed, the optimization of assay has been studied. The development of screen printing process combined with nanomaterial based disposable sensor technology leads herein a great opportunity for DNA detection using differential pulse voltammetry (DPV) by measuring the guanine oxidation signal observed at +1.00 V in the presence of DNA hybridization between HBV probe and its complementary, target. The detection limit estimated for signal to noise ratios =3 corresponds to 96.33 nM target concentration in the 40 μL samples. The advantages of carbon nanotube based screen printed electrode used for electrochemical monitoring of DNA hybridization are discussed with sensitivity, selectivity and reproducibility in comparison with previous nanomaterial based electrochemical transducers developed for DNA or other biomolecular recognitions.  相似文献   

12.
In this paper, nano‐gold modified carbon paste electrode (NGMCPE) was employed to develop an electrochemical DNA hybridization biosensor. The proposed sensor was made up by immobilization of 15‐mer single stranded oligonucleotide probe for detection of target DNA. Hybridization detection relies on the alternation in guanine oxidation signal following hybridization of the probe with complementary genomic DNA. The guanine oxidation was monitored using differential pulse voltammetry (DPV). Different factors such as activation potential, activation time and probe immobilization conditions were optimized. The selectivity of the sensor was investigated by non‐complementary oligonucleotides. Diagnostic performance of the biosensor was described and the detection limit was found 1.9 × 10?13 M at the NGMCPE surface. All of the investigations were performed in both CPE and NGMCPE and finally their results were compared.  相似文献   

13.
Wang J  Kawde AN  Musameh M 《The Analyst》2003,128(7):912-916
The preparation and attractive performance of carbon-nanotube modified glassy-carbon (CNT/GC) electrodes for improved detection of purines, nucleic acids, and DNA hybridization are described. The surface-confined multiwall carbon-nanotube (MWCNT) facilitates the adsorptive accumulation of the guanine nucleobase and greatly enhances its oxidation signal. The advantages of CNT/GC electrodes are illustrated from comparison to the common unmodified glassy carbon, carbon paste and graphite pencil electrodes. The dramatic amplification of the guanine signal has been combined with a label-free electrical detection of DNA hybridization. Factors influencing the enhancement of the guanine signal are assessed and optimized. The performance characteristics of the amplified label-free electrochemical detection of DNA hybridization are reported in connection to measurements of nucleic-acid segments related to the breast-cancer BRCA1 gene.  相似文献   

14.
Methylene blue (MB) is a typical photosensitizing agent and a DNA hybridization indicator, but its modes of interaction with the DNA molecules are not clearly described, particularly in relation to its electrochemical oxidation signals. To probe the DNA‐MB interactions we have used chromosomal salmon testes and supercoiled plasmid sc pUC19 DNA immobilized on home‐made screen‐printed electrodes (SPEs) and a wide range of MB concentrations, from nano‐ to micromolar. The applicability of the home‐made screen‐printed electrodes used for the DNA‐MB studies were tested using standard calf thymus DNA. Two MB oxidation peak signals: MB(I) at ca. ?0.18 V and MB(II) at 0 V vs. Ag/AgCl were detected within ±10–15% standard deviation, signals different from adsorbed MB signal (?0.25 V, pH 4.7). The MB(I) signal, seen when both DNAs were used, showed two plateaus, one at nano‐ and another at micromolar MB concentrations; these were accompanied by the changes in the oxidation signal at 0.98 V, usually attributed to guanine oxidation. In contrast, the MB(II) signal was only seen for salmon testes DNA, indicating various modes of MB interactions with chromosomal and plasmid DNA. In the presence of MB, the guanine related signal (G) at 0.98 V has been amplified significantly (10×), allowing for the identification of the DNAs at low DNA concentrations, the feature particularly useful in the plasmid sc pUC19 detection. The use of another DNA intercalator, riboflavin (RF), aided in the identification of the relation between MB(I), MB(II) and G oxidation signals.  相似文献   

15.
In the present study a chitosan/ionic liquid modified pencil graphite electrode (CHIT‐IL‐PGEs) was developed for the first time for enhanced electrochemical monitoring of nucleic acid, and the interaction of the anticancer drug Mitomycin C (MC) and calf thymus double stranded DNA (dsDNA) by measuring the oxidation signals of MC and guanine in the same voltammetric scale. Differential pulse voltammetry, cyclic voltammetry and electrochemical impedance spectroscopy techniques were used to evaluate the performance of the CHIT‐IL based biosensor on electrochemical monitoring of DNA, and drug‐DNA interaction. The experimental parameters, IL, dsDNA and MC concentration and the interaction time were then optimized.  相似文献   

16.
Palladium nanoparticles, in combination with multi‐walled carbon nanotubes (MWCNTs), were used to fabricate a sensitivity‐enhanced electrochemical DNA biosensor. MWCNTs and palladium nanoparticles were dispersed in Nafion, which were used to modify a glassy carbon electrode (GCE). Oligonucleotides with amino groups at the 5′ end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. Due to the ability of carbon nanotubes to promote electron‐transfer and the high catalytic activities of palladium nanoparticles for electrochemical reaction of MB, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.2×10?13 M.  相似文献   

17.
A novel multiwalled nanotubes (MWNTs)/Cerium(III) 12 ‐ tungstophosphoric acid (CePW) nanocomposite film glassy carbon electrode was prepared in this paper. Electrochemical behaviors of the CePW/MWNTs modified electrode were investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). This modified electrode brought new capabilities for electrochemical devices by combining the advantages of carbon nanotubes, rare‐earth, and heteropoly‐acids. The results demonstrated that the CePW/MWNTs modified electrode exhibited enhanced electrocatalytic behavior and good stability for the detection of guanine and adenine in 0.1 M PBS (pH 7.0). The experimental parameters were optimized and a direct electrochemical method for the simultaneous determination of guanine and adenine was proposed. The detection limit (S/N=3) for guanine and adenine was 2.0×10?8 M and 3.0×10?8 M, respectively. Further, the acid‐denatured calf thymus DNA was also detected and the result was satisfied.  相似文献   

18.
The ionic liquid (IL) modified chemically activated (CA) pencil graphite electrodes (PGEs) were developed for label‐free voltammetric detection of miRNA‐34a, and implemented to the real samples. Firstly, the electrochemical characterization of unmodified PGE, CA‐PGE, IL‐PGE and IL‐CA‐PGE was performed by cyclic voltammetry (CV) as well as their DNA binding capacity was studied by electrochemical impedance spectroscopy (EIS) technique. The microscopic characterization of the surface of each electrodes was investigated by scanning electron microscopy (SEM). Differential pulse voltammetry (DPV) technique was used for measuring the oxidation signal of guanine in order to perform a label‐free voltammetric monitoring of a full‐match hybridization specific to miRNA‐34a. The selectivity of biosensor was tested against to miRNA‐155, miRNA‐660 as well as to the mismatch sequence of miRNA‐34a. The further selectivity of this proposed biosensor was studied in the mixture of samples containing miRNA‐34a with other miRNAs (1 : 1). The voltammetric detection of miRNA‐34a was also explored in the artificial serum medium as fetal bovine serum (FBS) and also in total RNA samples isolated from HUH‐7 human hepatocellular carcinoma cell line.  相似文献   

19.
《Electroanalysis》2006,18(5):456-464
An electrochemical DNA biosensor was developed by DNA immobilization at the electrode surface and its electrochemical behavior was studied in relation with different materials added in the paste. The aim was to study new materials for the development of new electrode surfaces, to be applied in the study of DNA – drug interactions. New electrochemical sensing materials using polymer multilayers were reported for the adsorption of DNA. These materials were prepared by mixing a polymer ion exchanger and graphite powder. The mixture was then used to render the modified carbon paste electrode (CPE), on the surface of which the dsDNA was adsorbed and studied by differential pulse voltammetry (DP voltammetry). The signal of guanine oxidation peak of DNA was followed. This modified biosensor was applied for the study of the interaction between DNA and the known intercalators Ethidium Bromide (EB) and Acridine Orange (AO). The established biosensor exhibited an improvement of its sensitivity and repeatability compared with the conventional CPE DNA biosensor.  相似文献   

20.
Damage of salmon sperm double strand ss dsDNA in solution or immobilized on screen‐printed carbon electrode (SPCE) induced by incubation of DNA with the antineoplastic alkylating agent busulfan (BUS) at various conditions was detected for the first time by simple electrochemical methods. Chemical changes in DNA bases can be detected through the altered electroactivity of the DNA. Electrochemical voltammetric sensing of damage caused by BUS to dsDNA in solution was monitored by the appearance of peaks diagnostic of the oxidation of guanine and adenine. Moreover, crystal violet, which interacts with the DNA immobilized on SPCEs, was used as an effective electroactive indicator, in combination with cyclic voltammetry and differential pulse voltammetry techniques to monitor the cross‐links or damage to DNA. The interaction between BUS and DNA were determined by the changes in the voltammetric peak of crystal violet. The effects of various conditions upon the crystal violet signal were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号