首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal‐mediated or metal‐catalyzed reactions. However, metallacyclopentadienes of the alkaline‐earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro‐dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4‐dilithio 1,3‐butadienes. Single‐crystal X‐ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg? C(sp2) bonds have a synergetic effect when reacting with substrates.  相似文献   

2.
Asymmetric catalysis with readily available, cheap, and non‐toxic alkaline earth metal catalysts represents a sustainable alternative to conventional synthesis methodologies. In this context, we describe the development of a first MgII‐catalyzed enantioselective hydroboration providing the products with excellent yields and enantioselectivities. NMR spectroscopy studies and DFT calculations provide insights into the reaction mechanism and the origin of the enantioselectivity which can be explained by a metal‐ligand cooperative catalysis pathway involving a non‐innocent ligand.  相似文献   

3.
A family of magnesium acetylides was prepared by treating Bu2Mg with two equivalents of various alkyne ligands in the presence of different donors. The resulting complexes were examined for the influence of ligand and donors on the spectroscopic and structural properties of the target compounds. The magnesium complexes are compared to the heavier alkaline earth metal analogs.  相似文献   

4.
This contribution gives an overview on the different subjects treated in our group. One of our fundamental interests lies in the synthesis and study of low‐dimensional polymer and molecular solid state structures. We have chosen several synthetic approaches in order to obtain such compounds. Firstly, the concept of cutting out structural fragments from a solid state structure of a binary compound will be explained on behalf of BaI2. Oxygen donor ligands, used as chemical scissors on BaI2, allow obtaining three‐, two‐, one‐ and zero‐dimensional derived compounds depending on their size and concentration. Thus, a structural genealogy tree for BaI2 can be established. This method, transferred to alkali halides using crown ethers and calix[n]arenes as delimiting ligands, leads us to the subject of one‐dimensional ionic channels. A second chapter deals with the supramolecular approach for the synthesis of different dimensional polymer structures derived from alkaline earth metal iodides, and based on the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Under certain circumstances, rules can be established for the prediction of the dimensionality of a given compound, thus contributing to the fundamental problem of structure prediction in crystal engineering. A third part describes a fundamentally new synthetic pathway for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. In a first step, different molecular precursors, such as solvated alkaline earth metal halides are investigated as a function of the ligand size and reactivity. They are then reacted with some alkali metal compound in order to partially eliminate alkali halide and to form the clusters. The so obtained unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials. Approaches to two synthetic methods of the latter, sol‐gel and (MO)‐CVD, are investigated with our compounds. In order to generate single source precursors for oxide materials, we started to investigate transition metal ions, especially Cu and Ag, using multitopic ligands. This has led us into the fundamental problematic of “crystal engineering” and solid state structure prediction and we found ourselves confronted to numerous interesting cases of polymorphism and pseudo‐polymorphism. Weak interactions, such as π‐stacking, H‐bonding and metal‐metal interactions, and solvent, counter ion and concentration effects seem to play important roles in the construction of such low‐dimensional structures. Finally, the physical properties of some of our compounds are described qualitatively in order to show the wide spectrum of possibilities and potential applications for the chemistry in this field.  相似文献   

5.
Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal‐mediated or metal‐catalyzed reactions. However, metallacyclopentadienes of the alkaline‐earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro‐dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4‐dilithio 1,3‐butadienes. Single‐crystal X‐ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg C(sp2) bonds have a synergetic effect when reacting with substrates.  相似文献   

6.
The potential of alkali and alkaline earth metal chalcogenolates in synthetic chemistry and various technical applications has sparked the recent interest in the chemistry of alkali and alkaline earth metal thiolates, selenolates and tellurolates. As a result, an increasing body of work concerned with exploring synthetic routes to the target compounds, analyzing the influence of metal, ligand and donor on the structural chemistry, and correlating structure and function has appeared in the literature, most of which during the last few years. This article describes recent trends in this area of alkali and alkaline earth chemistry, by discussing synthetic access routes, analyzing structure determining factors such as metal, donor and ligand influence, comparing structural similarities and disparities in alkali and alkaline earth chemistry, and discussing structure–function relationships.  相似文献   

7.
Transition‐metal carbene complexes have been known for about 50 years and widely applied as reagents and catalysts in organic transformations. In contrast, the carbene chemistry of the rare‐earth metals is much less developed, but has attracted the research interest in the recent years. In this field rare‐earth‐metal alkylidene, especially methylidene, compounds are an emerging class of compounds with a high synthetic potential for organometallic chemistry and maybe in the future also for organic chemistry.  相似文献   

8.
9.
A variety of ester‐substituted cyclopentadiene derivatives have been synthesized by one‐pot reactions of 1,4‐dilithio‐1,3‐butadienes, CO, and acid chlorides. Direct deprotonation of the ester‐substituted cyclopentadienes with Ae[N(SiMe3)2]2 (Ae=Ca, Sr, Ba) efficiently generated members of a new class of heavier alkaline earth (Ca, Sr, Ba) metallocenes in good to excellent yields. Single‐crystal X‐ray structural analysis demonstrated that these heavier alkaline earth metallocenes incorporated two intramolecularly coordinated ester pendants and multiply‐substituted cyclopentadienyl ligands. The corresponding transition metal metallocenes, such as ferrocene derivatives and half‐sandwich cyclopentadienyl tricarbonylrhenium complexes, could be generated highly efficiently by metathesis reactions. The multiply‐substituted cyclopentadiene ligands bearing an ester pendant, and the corresponding heavier alkaline earth and transition‐metal metallocenes, may have further applications in coordination chemistry, organometallic chemistry, and organic synthesis.  相似文献   

10.
A new metal‐ion‐responsive and fluorescent foldamer, OPLM8 , composed of eight lysine–coumarin–azacrown units, has been designed and synthesized. The flexible OPLM8 can be forced into a well‐defined helix structure only upon the addition of alkaline earth metal ions. The structural change is based on the crown ether moieties being positioned in the requisite arrangement along the peptide chain, that is, at i, i+4 spacing, such that the alkaline earth metal ions can mediate the formation of four sandwich complexes between them. Moreover, varying the chelator‐to‐metal‐ion ratio from 2:1 to 1:1 resulted in disassembly of the sandwich complexes leading to collapse of the helical structure to a random coil. These metal‐ion‐induced structural transitions could not only be monitored by the CD amplitude change but also easily probed by unique “OFF–OFF–ON” fluorescence intensity changes from 0.7‐fold to 14‐fold as the structure changed from the folded helix to a random coil. To further verify that the helix formation was indeed induced by metal‐ion complexation, two kinds of control octamers with only four metal‐ion chelators on the side chains were studied. One, which was capable of forming two sandwich complexes between the i and i+4 residues, displayed a negative Cotton couplet with the magnitude of its A value close to half that of OPLM8 , and the second had four metal‐ion chelators positioned in the same turn, and hence was incapable of forming intramolecular metal complexes and showed different induced CD signals. Collectively, the photospectroscopic data and the results of the control studies suggest that alkaline earth metal ions can efficiently promote the flexible octamer OPLM8 into a well‐organized helix by the formation of sandwich complexes between substituents at an i, i+4 spacing.  相似文献   

11.
A new series of single‐component air‐stable transition metal acetylide catalysts for the polymerization of substituted acetylenes carrying non‐polar and polar groups was developed. The catalytic properties of transition metal acetylides are related to transition metals, phosphines and acetylenic ligands. Nickel acetylides show higher catalytic activity towards the polymerization of substituted acetylenes containing non‐polar groups, while palladium acetylides show higher catalytic activity towards the polymerization of substituted acetylenes carrying polar groups. Palladium acetylides with PPh3 ligand are efficient catalysts for the polymerization of substituted acetylenes bearing both non‐polar and polar groups.  相似文献   

12.
The lighter alkaline‐earth pernitrides BeN2, MgN and CaN2 have been structurally predicted by a series of density‐functional (GGA/PBE/PAW) electronic‐structure calculations. Despite their crystal chemistry clearly pointing towards the formulation M2+N22? with an N? N distance of 1.26 Å, all phases turn out as metallic compounds which are exothermic with respect to the elements. The M2+ coordination numbers are a simple function of the cationic radius. The bulk moduli are about three times smaller than those of the noble‐metal pernitrides, a consequence of the smaller anionic charge in the former phases. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

13.
The preparation of subvalent electropositive metal compounds succeeds in general by means of three different concepts: i) Stabilization can be achieved by delocalization of electrons in metallic matrices. A formal subvalence results from the total formula, whereas on closer examination of the bonding situation an expected “normal” valence of the metal atoms according to the octet rule can be concluded. ii) According the rules of determination of the oxidation state a formal subvalence arises from the formation of homonuclear element‐element bonds or metal clusters. However, in the case of M22+ units a normal valence is realized (which is well‐known in the chemistry of mercury as Hg22+, e.g. calomel Hg2Cl2). iii) The stabilization of subvalent metals with the aid of expanded π*‐systems of aren ligands succeeds when the energy lies between the two first ionization energies of the alkaline earth metal.  相似文献   

14.
《中国化学》2018,36(6):531-537
Raw and modified albite catalysts, including Pb/Albite and Fe/Albite catalysts, have been investigated for methane conversion to C2 hydrocarbons under non‐oxidative conditions. Introduction of Pb to albite improved the activity and selectivity to non‐coke products. Based on characterization, it was found that Pb entered into the alkali and alkaline‐earth metal sites of albite, while partial Fe doped in the tetrahedron sites and the other loaded on the surface of albite. At the reaction temperature of 1073 K, methane gas hourly space velocity (GHSV) of 2 L·gcat–1·h–1, catalyst dosage of 0.25 g (300 mesh), the methane conversion catalyzed by raw albite in the fixed‐bed micro reactor exhibited a methane conversion of 3.32%. Notably, introducing a Pb content of 3.4 wt% into albite greatly enhanced the conversion of methane up to 8.19%, and the selectivity of C2 hydrocarbons reached 99% without any coke under the same reaction conditions. While Fe‐doping could weakly heighten the methane conversion to 3.97%, and coke was formed. Thus, a comparison of Pb/Albite and Fe/Albite catalysts demonstrates that the catalytic activity of albite is mainly decided by alkali and alkaline‐earth metal sites, and lead‐modification can effectively improve the catalytic activity of albite.  相似文献   

15.
Open‐framework materials, such as metal–organic frameworks (MOFs) and coordination polymers have been widely investigated for their gas adsorption and separation properties. However, recent studies have demonstrated that their highly crystalline structures can be used to periodically organize guest molecules and non‐structural metal compounds either within their pore voids or by anchoring to their framework architecture. Accordingly, the open framework can act as a matrix for isolating and elucidating the structures of these moieties by X‐ray diffraction. This concept has broad scope for development as an analytical tool where obtaining single crystals of a target molecule presents a significant challenge and it additionally offers potential for obtaining insights into chemically reactive species that can be stabilized within the pore network. However, the technique does have limitations and as yet a general experimental method has not been realized. Herein we focus on recent examples in which framework materials have been utilized as a scaffold for ordering molecules for analysis by diffraction methods and canvass areas for future exploration.  相似文献   

16.
The knowledge on alkaline‐earth metal nitrides of main‐group elements with Perovskite structures of the general composition (A3Nx)E is reviewed. Compounds with closely related crystal structures denoted as Ruddlesden‐Popper‐Series are also taken into account. In a second part, radii considerations are discussed for use in prediction of the occurrence of distorted Perovskites and hexagonal Perovskite stacking variants.  相似文献   

17.
Crown ethers and their supramolecular derivatives are well‐known chelators and scavengers for a variety of cations, most notably heavier alkali and alkaline‐earth ions. Although they are widely used in synthetic chemistry, available crystal structures of uncoordinated and solvent‐free crown ethers regularly suffer from disorder. In this study, we present the X‐ray crystal structure analysis of well‐ordered solvent‐free crystals of dibenzo‐21‐crown‐7 (systematic name: dibenzo[b ,k ]‐1,4,7,10,13,16,19‐heptaoxacycloheneicosa‐2,11‐diene, C22H28O7). Because of the quality of the crystal and diffraction data, we have chosen invarioms, in addition to standard independent spherical atoms, for modelling and briefly discuss the different refinement results. The electrostatic potential, which is directly deducible from the invariom model, and the Hirshfeld surface are analysed and complemented with interaction‐energy computations to characterize intermolecular contacts. The boat‐like molecules stack along the a axis and are arranged as dimers of chains, which assemble as rows to form a three‐dimensional structure. Dispersive C—H…H—C and C—H…π interactions dominate, but nonclassical hydrogen bonds are present and reflect the overall rather weak electrostatic influence. A fingerprint plot of the Hirshfeld surface summarizes and visualizes the intermolecular interactions. The insight gained into the crystal structure of dibenzo‐21‐crown‐7 not only demonstrates the power of invariom refinement, Hirshfeld surface analysis and interaction‐energy computation, but also hints at favourable conditions for crystallizing solvent‐free crown ethers.  相似文献   

18.
This article provides a concise summary of alkaline earth metal nitrogen chemistry. This important area of s-block metal chemistry is shedding important light on the recent development of alkaline earth metal chemistry, as the preparation of the target compounds utilizes a large variety of synthetic methodology. Further, the compounds have been utilized in a range of applications, including polymerization initiation, catalysis, as solid-state precursors, and even high energy materials.  相似文献   

19.
The heterocyclic family of azoles have recently become one of the most widely used members of the N‐heterocycles; the most prominent one being 1H‐1,2,3‐triazole and its derivatives. The sudden growth of interest in this structural motif was sparked by the advent of click chemistry, first described in the early 2000s. From the early days of click chemistry, when the accessibility of triazoles made them into one of the most versatile linkers, interest has slowly turned to the use of triazoles as functional building blocks. The presence of multiple N‐coordination sites and a highly polarized carbon atom allows for metal coordination and the complexation of anions by both hydrogen and halogen bonding. Exploitation of these multiple binding sites makes it possible for triazoles to be used in various functional materials, such as metallic and anionic sensors. More recently, triazoles have also shown their potential in catalytic systems, thus increasing their impact far beyond the initial purpose of click chemistry. This report gives an overview of the structure, functionalities, and use of triazoles with a focus on their use in catalytic systems.  相似文献   

20.
The synthesis of alkali and alkaline earth salts of 3,3′‐diamino‐4,4′‐dinitramino‐5,5′‐bi‐1,2,4‐triazole (H2ANAT) is reported. The fast and convenient three steps reaction toward the target compounds does not require any organic solvents. In addition to an intensive characterization of all synthesized metal salts, the focus was on developing chlorine and nitrate‐free red‐light‐generating pyrotechnical formulations. Strontium 3,3′‐diamino‐4,4′‐dinitramino‐5,5′‐bitriazolate hexahydrate served as colorant and oxidizer in one molecule. The energetic properties of all developed pyrotechnical formulations assure safe handling and manufacturing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号