首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
共轭聚合物纳米颗粒是由π-共轭有机聚合物组成的尺寸在1~100nm范围内的新型有机纳米材料。与传统的有机小分子、半导体量子点和无机纳米材料相比,聚合物纳米颗粒具有光学性质特殊、结构多样、表面易修饰和生物相容性好等优点,因而被广泛应用于生物成像、传感与检测、载药和治疗等领域。本文主要围绕聚合物纳米颗粒的制备方法、性质结构和生物相容性等方面,重点介绍了聚合物纳米颗粒作为光诊疗剂在荧光成像、光声成像,以及光动力和光热治疗领域的研究进展,并对聚合物纳米颗粒的发展前景和未来面临的挑战进行了探讨。  相似文献   

2.
光声成像是一种新兴医学影像成像技术。作为一种非侵入式和非电离式的成像技术,光声成像具有高分辨率、高对比度和穿透深度高的特点。这种成像技术在对组织进行诊断时需要加入造影剂与组织相结合才能产生显著的光声信号。然而,目前光声成像技术仍缺乏合适的造影剂,制约了其在生物医学领域的应用。共轭聚合物因其具有优异的光热性能和良好的生物相容性,被广泛应用于光声成像领域。本文综述了共轭聚合物作为外源性造影剂在光声成像领域的应用的研究进展,并对共轭聚合物光声造影剂的发展进行了展望。  相似文献   

3.
氟硼吡咯和氮杂氟硼吡咯分别与草酰氯在N,N-二甲基甲酰胺溶液中发生Vilsmeier-Haack反应,生成相应的β-甲酰氟硼吡咯和β-甲酰氮杂氟硼吡咯.该反应分别在室温和50℃搅拌条件下顺利实现,并对氟硼吡咯和氮杂氟硼吡咯两种底物都具有较高产率.此外,该反应具有原料易得、低污染的优点.  相似文献   

4.
黄婷  陈妍  孙鹏飞  范曲立  黄维 《高分子学报》2020,(4):346-354,I0002
为提高生物组织荧光成像质量以及对肿瘤的高效光热治疗,设计合成了一种新型的窄带隙共轭聚合物(BDT-TTQ),并通过纳米沉积的方式将聚合物制备成水溶性纳米粒子(BDT-TTQ NPs).该共轭聚合物纳米粒子在1000~1200 nm近红外二区范围具有较好的吸收,在1064 nm的激发光下能实现1200~1400 nm的近红外二区荧光成像. BDT-TTQ NPs纳米粒子粒径分布较窄,形貌呈规则的球形且分散均匀,具有好的生物相容性.该纳米粒子既可以在体外实现较高的近红外二区荧光成像穿透深度,又可以实现对小鼠活体血管的高清晰度的近红外二区荧光成像.此外,BDT-TTQ NPs纳米粒子在1064 nm激光下展现出优异的光热转换效率,具有较高的光毒性,对体外的肿瘤细胞以及小鼠的异质瘤具有高的光热杀伤能力.  相似文献   

5.
沈宝星  钱鹰 《有机化学》2016,(4):774-781
通过Click反应合成了萘酰亚胺-氟硼二吡咯复合结构荧光分子1-(2-(4-(1,3,5,7-四甲基氟硼二吡咯基)苯氧基)乙基)-4-(4-N-正丁基-1,8-萘酰亚胺)-1,2,3-三唑(NP-BODIPY),化合物结构经核磁共振氢谱、核磁共振碳谱以及高分辨质谱确征.NP-BODIPY存在从萘酰亚胺能量给体到氟硼二吡咯能量受体之间的分子内荧光共振能量转移.制备了负载萘酰亚胺-氟硼二吡咯荧光染料NP-BODIPY的二氧化硅荧光纳米粒子NP-BODIPY/Si O_2,粒径为50 nm,测定了NP-BODIPY的紫外可见吸收及荧光光谱.NP-BODIPY的固体在暗室中紫外灯下呈紫红色荧光;NP-BODIPY的THF溶液呈明亮的绿色荧光,荧光发射在430和510 nm呈双峰结构,荧光量子产率为0.67,紫外吸收位于366和500 nm;NP-BODIPY在含水量为80%H_2O/THF混合溶液中的荧光较强,荧光量子产率为0.39,最大荧光峰位于510 nm.将其与人乳腺癌细胞(MCF-7)共同孵化,荧光染料纳米粒子进入MCF-7细胞内并清晰成像.NP-BODIPY/Si O_2荧光纳米粒子亲水性好,尺寸可控,细胞毒性低,生物相容性优,可广泛应用于生物标记及荧光成像.  相似文献   

6.
采用2,2,6,6-四甲基-1-哌啶氧化物(TEMPO)的溴盐对化学共沉淀法制备的Fe3O4纳米粒子进行表面修饰,以该粒子为过氧引发剂,苯乙烯(St)、马来酸酐(MA)为单体,采用"活性"/可控自由基聚合技术在粒子表面原位引发聚合,制备了聚(苯乙烯-马来酸酐)/Fe3O4纳米杂化材料,并对纳米Fe3O4及杂化材料进行了FT-IR、XRD、TGA、TEM和GPC表征。结果表明,所制备的纳米杂化材料的平均粒径约为70 nm,磁性粒子表面的聚合物分子链随着聚合时间的增长而增长。振动样品磁强计测试结果显示,在室温、外加磁场下,该纳米杂化材料呈现超顺磁性,饱和磁化强度随着包覆聚合物量的增加而降低。  相似文献   

7.
本文合成了一系列骨架结构8-位为吡啶基取代的氟硼吡咯Bn(n=1~6)及氮杂氟硼吡咯Aza-Bn(n=1~2)衍生物.并以其为光敏剂,钴肟配合物Cn(n=1~4)为质子还原催化剂构建了基于非贵金属的多组分均相光解水制氢体系,并对体系进行优化.在最佳优化条件下,即以C1为催化剂,三乙醇胺(TEOA)为电子给体,在乙腈/水=4:1(v/v),pH 8.5中,可见光(λ420 nm)照射下,碘代氟硼吡咯B4、B5和B6为光敏剂所构建的制氢体系,随着8-位吡啶环上氮原子取代位置的不同,体系的催化转化数(TON)分别为90、101和164,而未碘代的氟硼吡咯(B1~B3)和氮杂氟硼吡咯Aza-Bn(n=1~2)则没有制氢活性.通过电化学测试及光谱实验,并结合密度泛函理论计算,推测体系的电子转移途径和制氢机理.  相似文献   

8.
通过傅克酰基化反应合成4,4'-二(4-氟苯甲酰基)二苯醚、4,4'-二(五氟苯甲酰基)二苯醚、4,4'-二(4-氟苯甲酰基)二苯硫醚以及4,4'-二(五氟苯甲酰基)二苯醚4种长链双卤单体,并进一步制备了含二氮杂萘酮聚芳醚酮聚合物.通过多氟取代双卤单体在含二氮杂萘酮聚芳醚酮聚合物主链中引入氟原子.多氟取代双卤单体具有多...  相似文献   

9.
光热治疗是近年来兴起的一种治疗方法,具有靶向性强、适应性广的特点。在光热治疗中,通过光热剂对光的吸收将光能转化为热能,从而实现治疗作用,因而光热剂的光热转化性能直接决定了光热治疗的效果。光热剂的种类丰富,涵盖由无机到有机等组成和性能各异的多种材料。其中,聚吡咯具备良好的生物相容性、优异的光稳定性以及光热转化性能,在光热治疗领域受到广泛关注,是一种拥有巨大应用潜力的光热剂,然而其在光热治疗领域的发展趋势及前景却鲜有报道。本文综述了聚吡咯及其纳米复合材料的制备方法,详述了聚吡咯及其纳米复合材料在光热治疗领域中的应用情况,包括聚吡咯基纳米材料的自身性能和实际光热治疗的效果,指出以聚吡咯为基体或修饰材料来制备具有CT、磁共振、光声显影及光热治疗性能的聚吡咯基复合材料已成为发展趋势。在此基础上,本文还总结了聚吡咯基纳米复合材料在制备和应用中存在的问题,并分析了其在发展过程中遇到的挑战以及在生物医学应用中的前景。  相似文献   

10.
以对羟基苯甲醛和2,4-二甲基吡咯为原料,设计并合成了两个新型的8-位苯系取代的硼-二吡咯亚甲基染料类荧光化合物--4,4-二氟-8-[4′-(3-吗啉丙氧基)苯基]-1,3,5,7-四甲基-4-硼-3a,4a-二氮杂-s-引达省和1,4-二{4,4-二氟-8-[4′-(2-乙氧基)苯基]-1,3,5,7-四甲基-4-...  相似文献   

11.
本文综述了用于193 nm深紫外光刻胶的主体成膜树脂的种类及常用合成单体的研究进展,包括聚(甲基)丙烯酸酯体系、环烯烃-马来酸酐共聚物(COMA)体系、乙烯醚-马来酸酐共聚物(VEMA)体系、降冰片烯加成聚合物体系、环化聚合物体系、有机-无机杂化树脂体系以及光致产酸剂(PAG)接枝聚合物主链型等,并分析了目前关于曝光、分辨率和抗蚀刻性能方面存在的问题及未来的发展方向。  相似文献   

12.
光声成像技术是采用"光激发声探测图像重建"的方法进行成像的一种新型分子影像技术。作为一种非侵害性的成像技术,光声成像既具备了声学成像技术穿透深度高的特点,也具备了光学成像技术高分辨率和高对比度的特性,克服了传统光学成像技术在成像深度与分辨率上不可兼得的缺陷。然而目前光声成像技术仍缺乏合适造影剂,严重制约了其应用与拓展,因此设计开发高效的光声造影剂是光声成像技术发挥其巨大潜能的关键。本文综述了五类有机光声造影剂(苝酰亚胺类、花菁类、BODIPY类、卟啉类和聚合物类)的研究进展,着重分析其结构与光学性质相关的构效关系,为有机光声造影剂的设计和开发提供指导,最后对有机光声造影剂存在的主要问题以及未来的热点方向进行了分析和展望。  相似文献   

13.
《高分子学报》2021,52(10):1343-1352
为获得同时具有优异的溶解性,高亮度的近红外二区(NIR-Ⅱ,1000~1700 nm)荧光和强的NIR-Ⅱ光热转换能力的共轭聚合物,采用三元共聚策略构建了基于强电子受体和供体的NIR-Ⅱ发射共轭骨架.在此基础上,进一步通过调控电子给体BDT与2TC之间的比例,得到了一系列具有NIR-Ⅱ吸收和优异溶解性的共轭聚合物(BDT-2TC12,BDT-2TC11,BDT-2TC21).这些聚合物在700~1200 nm具有较强的NIR吸收,并在808 nm激光激发下表现出在1000~1400 nm区域内的优异NIR-Ⅱ荧光性能.利用纳米沉积的方法,将目标聚合物BDT-2TC12用两亲性的二硬脂酰磷脂酰乙酰胺-甲氧基聚乙二醇(DSPE-mPEG)进行包覆,制备得到水溶性良好的纳米粒子(BDT-2TC12NPs).该纳米粒子具有良好的稳定性,在808和1064 nm处均有较强的吸收.在1064 nm激光照射下,纳米粒子表现出优异的NIR-Ⅱ光热转换效果,可以实现对肿瘤细胞的光热治疗(PTT).在808 nm的激光激发下,纳米粒子还可以实现对小鼠血管和其他生物组织的高清晰度的NIR-Ⅱ荧光成像(FI).  相似文献   

14.
采用简单的液相法制备了核壳结构的Ag@BaGdF_5∶Yb~(3+),Ho~(3+)纳米复合材料。XRD测试表明复合材料中含有立方相的Ag和立方相的BaGdF_5。电镜照片表明复合粒子为球形,包覆后颗粒变大,包覆层BaGdF_5∶Yb~(3+),Ho~(3+)的厚度约为14 nm。荧光光谱测试表明复合材料具有良好的上转换发光性能,以绿光发射最强,同时样品具有良好的顺磁性和光热转换性能。MTT测试表明复合材料具有良好的生物相容性,将其同HeLa细胞共同培养后用980 nm激光照射,具有明亮的绿色上转换荧光成像。将不同浓度的纳米复合材料和商用计算机断层扫描(CT)成像造影剂碘比醇进行比较,纳米复合材料具有更高的CT成像性能。在NIR照射下,纳米复合材料生成的热足以有效杀死HeLa细胞。  相似文献   

15.
利用铁离子诱发吡咯氧化聚合反应制备了尺寸均一的聚吡咯纳米粒子, 并进一步负载化疗药物吉西他滨, 得到了吉西他滨/聚吡咯复合纳米粒子. 该复合纳米粒子对吉西他滨的负载能力强, 在水溶液中的稳定性好, 有助于降低吉西他滨对正常组织的毒副作用. 此外, 该复合纳米粒子在近红外光区有较强的吸收, 能够将吸收的光能转化为热, 是一种良好的光热试剂, 具有光热治疗功能. 同时, 该复合纳米粒子能够在热刺激下释放吉西他滨, 具有光热介导的化疗功能. 因此, 吉西他滨/聚吡咯复合纳米粒子是一种兼具化疗和光热治疗功能的联合治疗试剂. 复合纳米粒子在808 nm近红外激光照射下能够快速提升系统温度, 实现光热治疗与化疗联合杀伤卵巢癌细胞, 具有良好的生物医学应用潜力.  相似文献   

16.
利用氯化钨和吡咯等原料通过溶剂热法和原位还原制备了聚吡咯包裹的WO3-x纳米粒子。用扫描电镜和红外光谱表征了复合材料,通过单线态氧生成能力、光热测试和体外杀菌实验,对比了聚吡咯包裹前后WO3-x纳米粒子的光动力光热和杀菌性能。结果表明,得到的聚吡咯包裹的WO3-x纳米粒子复合材料在808 nm照射下具有较好的单线态氧生成能力及光热性能。体外杀菌实验证明了其对革兰氏阳性菌和革兰氏阴性菌具有优秀的杀菌性能,对金黄色葡萄球菌和大肠杆菌的杀菌率分别为99.89%和99.71%。  相似文献   

17.
刘巴蒂  王承俊  钱鹰 《化学学报》2022,80(8):1071-1083
设计并合成了两种新型噻吩基氟硼二吡咯(Thienyl-BODIPY)近红外光敏染料ITBDP-1和ITBDP-2. 两种光敏染料的吸收和发射波长均达到近红外区, ITBDP-1的吸收与发射峰分别是617 nm和650 nm; ITBDP-2的吸收与发射峰分别是687 nm和731 nm. 两种光敏剂均具有较高的单线态氧产率, ITBDP-1与ITBDP-2的单线态氧产率(ΦΔ)分别为51%和24%. 通过密度泛函理论(DFT)计算研究了光敏染料激发态下的能量变化, 理论计算表明, ITBDP-1和ITBDP-2在激发至单重态后可通过系间窜越(ISC)到达三重态, 从而提高单线态氧产率. ITBDP-1和ITBDP-2在A549细胞内具有良好的的荧光成像效果, 并且在900 nm激光激发下, ITBDP-1能够在斑马鱼体内显示出清晰的双光子荧光成像. 单线态氧成像实验证明了光敏染料在光激发下可以在肿瘤细胞和斑马鱼中产生单线态氧. 通过噻唑蓝(MTT)比色法测定了两种光敏染料的光毒性和暗毒性, ITBDP-1和ITBDP-2的最大半抑制浓度(IC50)分别为2.22 μmol•L-1和2.86 μmol•L-1, 并且无光照条件下细胞的存活率在80%以上, 证明了两种光敏染料均具有较高的光毒性和良好的生物相容性. ITBDP-1和ITBDP-2可以在近红外光激发下实现荧光成像指导的光动力学治疗, 并且可以实现生物体内的双光子荧光成像, 这一结果也为噻吩基氟硼二吡咯光敏染料在长波激发下的双光子光动力学治疗应用打下了基础.  相似文献   

18.
聚合物分子刷是一种通过共价键连接的单分子纳米材料,与通过超分子自组装获得的纳米组装体相比,其在复杂的生理环境中具有更好的循环稳定性.另外,可以通过调控聚合物分子刷主链与侧链的相对长度,即调控长径比,获得类似于球状、棒状、蠕虫状的纳米颗粒,为研究具有相同化学组成不同形貌的纳米颗粒的生理行为提供了研究平台.因此,本文总结了近十年来聚合物分子刷在小分子药物输送、基因负载、生物成像等纳米医学领域的相关研究进展,并展望了聚合物分子刷在纳米医学领域的发展前景.  相似文献   

19.
肿瘤是全世界发病率最高、死亡率最大的疾病之一.鉴于肿瘤的高风险与高死亡率,世界各地的研究人员致力于开发更精确快速的诊断策略和更有效的治疗方法来对抗,针对肿瘤的光学诊疗一体化技术应运而生.氟硼荧类化合物(BODIPY)因其优良的光学性质在肿瘤光诊疗中被广泛关注.详细介绍了BODIPY及其衍生物作为光敏剂、光热转化剂及显影剂在肿瘤诊疗(光动力治疗、光热治疗、光声成像)以及诊疗一体化中的应用,全面系统地评价了不同BODIPY结构以及其衍生物在肿瘤诊疗中的效果.这对于合理设计具有高单线态氧量子产率、高光热转化率以及良好的光稳定性和溶解性等优点的近红外BODIPY材料具有重要意义.  相似文献   

20.
二(β-氯乙基)烯丙胺与3,6-二氧杂辛-1,8-二硫醇在乙醇钠存在下关环缩合,得到具有烯基侧链的1,7-二硫杂-10,13-二氧杂-4-氮杂-4-烯丙基环十五烷.后者通过硅氢加成、二氧化硅固载.再与氯亚铂酸钾反应,合成了一种新型有机硅聚合物负载硫、氮杂冠醚及其铂配合物.该配合物对于烯烃硅氢加成反应具有良好的催化性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号