首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
The reaction of peroxynitrite with violet-colored MnO4- leads to the formation of green MnO42-. The rate constant for the reaction at pH 11.7, 5.5 mM ionic strength, and 25 degrees C, 0.020 +/- 0.001 s(-1), is independent of the MnO4- concentration; homolysis of ONOO- to NO* and O2*- is the rate-determining step. Both NO* and O2*- react with MnO4- with rate constants of (3.5 +/- 0.7) x 10(6) M(-1)s(-1) and (5.7 +/- 0.9) x 10(5) M(-1)s(-1), respectively. The activation volume and activation energy for breaking the N-O bond are 12.6 +/- 0.8 cm(3)mol(-1) and 102 +/- 2 kJ mol(-1), respectively. In combination with the known standard Gibbs energies of formation of NO* and O2*-, the rate of the reaction of NO* and O2*-, and the pKa of ONOOH, we find a standard Gibbs energy of formation of ONOO- of +68 +/- 1 kJ mol(-1), and of ONOOH of +31 +/- 1 kJ mol(-1).  相似文献   

2.
N2O gas phase chemistry has been examined as it relates to the problem of ultrathin film silicon oxynitridation for semiconductor devices. Computational and analytical kinetics studies are presented that demonstrate: (i) there are 5 main reactions in the decomposition of N2O, (ii) the gas composition over a 1000K – 1400K temperature range is as follows: N2 (65.3 − 59.3%); O2 (32.0 − 25.7%); NO (2.7 − 15.0%), (iii) the N2O decomposition obeys first-order kinetics, and the initial rate law for N2O decomposition is Rinit = 2k1[N2O] which rapidly changes to Rlate = k1[N2O] as the reaction proceeds, (iv) the branching ratio for the two reactions: N2O + O → 2NO and N2O + O → N2 + O2 lies between 0.1 and 0.5 (0.1 < < 0.5) and varies with conditions, (v) the apparent activation energy for the decomposition of N2O is 2.5 eV/molecule (2.4×102 kJ/mole), (vi) the rate law for NO formation is R = k1N2O], and (vii) the apparent activation energy for the formation of NO is 2.4 eV/molecule (2.3×102 kJ/mole).  相似文献   

3.
The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13×10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.  相似文献   

4.
The influence of substituent nature and position on the unimolecular decomposition of nitroaromatic compounds was investigated using the density functional theory at a PBE0/6-31+G(d,p) level. As the starting point, the two main reaction paths for the decomposition of nitrobenzene were analyzed: the direct carbon nitrogen dissociation (C6H5 + NO2) and a two step mechanism leading to the formation of phenoxyl and nitro radicals (C6H5O + NO). The dissociation energy of the former reaction was calculated to be 7.5 kcal/mol lower than the activation energy of the second reaction. Then the Gibbs free energies were computed for 15 nitrobenzene derivatives characterized by different substituents (nitro, methyl, amino, carboxylic acid, and hydroxyl) in the ortho, meta, and para positions. In meta position, no significant changes appeared in the reaction energy profiles whereas ortho and para substitutions led to significant deviations in energies on the decomposition mechanisms due to the resonance effect of the nitro group without changing the competition between these mechanisms. In the case of para and meta substitutions, the carbon-nitro bond dissociation energy has been directly related to the Hammett constant as an indicator of the electron donor-acceptor effect of substituents.  相似文献   

5.
The kinetics and mechanism for the reaction of ClOO with NO have been investigated by ab initio molecular orbital theory calculations based on the CCSD(T)/6-311+G(3df)//PW91PW91∕6-311+G(3df) method, employed to evaluate the energetics for the construction of potential energy surfaces and prediction of reaction rate constants. The results show that the reaction can produce two key low energy products ClNO + (3)O(2) via the direct triplet abstraction path and ClO + NO(2) via the association and decomposition mechanism through long-lived singlet pc-ClOONO and ClONO(2) intermediates. The yield of ClNO + O(2) ((1)△) from any of the singlet intermediates was found to be negligible because of their high barriers and tight transition states. As both key reactions initially occur barrierlessly, their rate constants were evaluated with a canonical variational approach in our transition state theory and Rice-Ramspergen-Kassel-Marcus/master equation calculations. The rate constants for ClNO + (3)O(2) and ClO + NO(2) production from ClOO + NO can be given by 2.66 × 10(-16) T(1.91) exp(341/T) (200-700 K) and 1.48 × 10(-24) T(3.99) exp(1711/T) (200-600 K), respectively, independent of pressure below atmospheric pressure. The predicted total rate constant and the yields of ClNO and NO(2) in the temperature range of 200-700 K at 10-760 Torr pressure are in close agreement with available experimental results.  相似文献   

6.
7.
Peroxynitrite decay in weakly alkaline media occurs by two concurrent sets of pathways which are distinguished by their reaction products. One set leads to net isomerization to NO(3)(-) and the other set to net decomposition to O(2) plus NO(2)(-). At sufficiently high peroxynitrite concentrations, the decay half-time becomes concentration-independent and approaches a limiting value predicted by a mechanism in which reaction is initiated by unimolecular homolysis of the peroxo O-O bond, i.e., the following reaction: ONOOH --> (*)OH + (*)NO(2). This dynamical behavior excludes alternative postulated mechanisms that ascribe decomposition to bond rearrangement within bimolecular adducts. Nitrate and nitrite product distributions measured at very low peroxynitrite concentrations also correspond to predictions of the homolysis model, contrary to a recent report from another laboratory. Additionally, (1) the rate constant for the reaction ONOO(-) --> (*)NO + (*)O(2)(-), which is critical to the kinetic model, has been confirmed, (2) the apparent volume of activation for ONOOH decay (DeltaV() = 9.7 +/- 1.4 cm(3)/mol) has been shown to be independent of the concentration of added nitrite and identical to most other reported values, and (3) complex patterns of inhibition of O(2) formation by radical scavengers, which are impossible to rationalize by alternative proposed reaction schemes, are shown to be quantitatively in accord with the homolysis model. These observations resolve major disputes over experimental data existing in the literature; despite extensive investigation of these reactions, no verifiable experimental evidence has been advanced that contradicts the homolysis model.  相似文献   

8.
The reaction mechanism for nitrous oxide decomposition has been studied on hydrated and dehydrated mononuclear iron sites in Fe-ZSM-5 using density functional theory. In total, 46 different surface species with different spin states (spin multiplicity M(S) = 4 or 6) and 63 elementary reactions were considered. Heats of adsorption, activation barriers, reaction rates, and minimum energy pathways were determined. The approximate minimum energy pathways and transition states were calculated using the "growing string method" and a modified "dimer method". Spin surface crossing (e.g., O(2) desorption) was considered. The minimum potential energy structure on the seam of two potential energy surfaces was determined with a multiplier penalty function algorithm by Powell and approximate rates of spin surface crossings were calculated. It was found that nitrous oxide decomposition is first order with respect to nitrous oxide concentration and zero order with respect to oxygen concentration. Water impurities in the gas stream have a strong inhibiting effect. In the concentration range of 1-100 ppb, the presence of water vapor influences the surface composition and the apparent rate coefficient. This is especially relevant in the temperature range of 600-700 K where most experimental kinetic studies are performed. Apparent activation barriers determined over this temperature range vary from 28.4 (1 ppb H(2)O) to 54.8 kcal/mol (100 ppb H(2)O). These results give an explanation why different research groups and different catalyst pretreatments often result in very different activation barriers and preexponential factors. Altogether perfect agreement with experimental results could be achieved.  相似文献   

9.
The rate constant of the reaction NCN + O has been directly measured for the first time. According to the revised Fenimore mechanism, which is initiated by the NCN forming reaction CH + N(2)→ NCN + H, this reaction plays a key role for prompt NO(x) formation in flames. NCN radicals and O atoms have been quantitatively generated by the pyrolysis of NCN(3) and N(2)O, respectively. NCN concentration-time profiles have been monitored behind shock waves using narrow-bandwidth laser absorption at a wavelength of λ = 329.1302 nm. Whereas no pressure dependence was discernible at pressures between 709 mbar < p < 1861 mbar, a barely significant temperature dependence corresponding to an activation energy of 5.8 ± 6.0 kJ mol(-1) was found. Overall, at temperatures of 1826 K < T < 2783 K, the rate constant can be expressed as k(NCN + O) = 9.6 × 10(13)× exp(-5.8 kJ mol(-1)/RT) cm(3) mol(-1) s(-1) (±40%). As a requirement for accurate high temperature rate constant measurements, a consistent NCN background mechanism has been derived from pyrolysis experiments of pure NCN(3)/Ar gas mixtures, beforehand. Presumably, the bimolecular secondary reaction NCN + NCN yields CN radicals hence triggering a chain reaction cycle that efficiently removes NCN. A temperature independent value of k(NCN + NCN) = (3.7 ± 1.5) × 10(12) cm(3) mol(-1) s(-1) has been determined from measurements at pressures ranging from 143 mbar to 1884 mbar and temperatures ranging from 966 K to 1900 K. At higher temperatures, the unimolecular decomposition of NCN, NCN + M → C + N(2) + M, prevails. Measurements at temperatures of 2012 K < T < 3248 K and at total pressures of 703 mbar < p < 2204 mbar reveal a unimolecular decomposition close to its low pressure limit. The corresponding rate constants can be expressed as k(NCN + M) = 8.9 × 10(14)× exp(-260 kJ mol(-1)/RT) cm(3) mol(-1) s(-1)(±20%).  相似文献   

10.
硝酸铬与组氨酸配合行为的相化学与热化学研究   总被引:3,自引:0,他引:3  
用相平衡方法研究了硝酸铬-组氨酸-水体系在298.15K时的溶度,绘制了体系的相图,发现并制备了文献未报道的一致溶解配合物:Cr(His)(NO3)3·3H2O(A),Cr(His)2(NO3)3·3H2O(B)和Cr(His)3(NO3)3·3H2O(C),经分析确定了其组成。用微热量计热测定了硝酸铬和组氨酸在水中的反应焓,计算了这些反应的热动力学参数(活化焓、活化熵及活化自由能)、速率常数和动力学能数(活化能、指前因子及反应级数)。  相似文献   

11.
Quasi-classical trajectory (QCT) calculations on a model potential energy surface (PES) show strong deviations from statistical Rice-Ramsperger-Kassel-Marcus (RRKM) rate theory for the decomposition reaction (1) CH3OONO* --> CH3O + NO2, where the highly excited CH3OONO* was formed by (2) CH3O2 + NO --> CH3OONO*. The model PES accurately describes the vibrational frequencies, structures, and thermochemistry of the cis- and trans-CH3OONO isomers; it includes cis-trans isomerization in addition to reactions 1 and 2 but does not include nitrate formation, which is too slow to affect the decay rate of CH3OONO*. The QCT results give a strongly time-dependent rate constant for decomposition and damped oscillations in the decomposition rate, not predicted by statistical rate theory. Anharmonicity is shown to play an important role in reducing the rate constant by a factor of 10 smaller than predicted using classical harmonic RRKM theory (microcanonical variational transition state theory). Master equation simulations of organic nitrate yields published previously by two groups assumed that RRKM theory is accurate for reactions 1 and 2 but required surprising parametrizations to fit experimental nitrate yield data. In the present work, it is hypothesized that the non-RRKM rate of reaction (1) and vibrational anharmonicity are at least partly responsible for the surprising parameters.  相似文献   

12.
CF3O2自由基和NO反应机理的理论研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法, 分别在6-31G、6-311G、6-311+G(d)基组水平上研究了CF3O2自由基和NO反应机理. 研究结果表明, CF3O2自由基和NO反应存在三条可行的反应通道, 优化得到了相应的中间体和过渡态. 从活化能看, 通道CH3O2+NO→IM1→TS1→IM2→TS2→CF3O+ONO的活化能最低, 仅为70.86 kJ•mol-1, 是主要反应通道, 主要产物是CF3O和NO2. 而通道CH3O2+NO→IM1→TS3→CF3ONO2和CH3O2+NO→TS4→IM3→TS5→IM4→TS6→CF3O+NOO的活化能较高, 故该反应难以进行.  相似文献   

13.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

14.
采用CCSD(T)/aug-cc-p VTZ//B3LYP/6-311+G(2df,2p)方法对n(H_2O)(n=0,1,2)参与HO_2+NO→HNO_3反应的微观机理和速率常数进行了研究.结果表明,由于水分子与HO_2形成的复合物(H_2O…HO_2,HO_2…H_2O)结合NO与水分子形成的复合物(NO…H_2O,ON…H_2O)的反应方式具有较高能垒和较低有效速率,其对HO_2+NO→HNO_3反应的影响远小于双体水(H_2O)2与HO_2(或NO)形成复合物然后再与另一分子反应物NO(或HO_2)的反应方式,因此n(H_2O)(n=1,2)催化HO_2+NO→HNO_3反应主要经历了HO_2…(H_2O)_n(n=1,2)+NO和NO…(H_2O)_n(n=1,2)+HO_22种反应类型.由于HO_2…(H_2O)_n(n=1,2)+NO反应的低能垒和高速率,HO_2…(H_2O)_n(n=1,2)+NO反应优于NO…(H_2O)_n(n=1,2)+HO_2反应.与此同时,由于计算温度范围内HO_2…H_2O+NO反应的有效速率常数比HO_2…(H_2O)2+NO反应对应的有效速率常数大了10~12数量级,可推测(H_2O)_n(n=1,2)催化HO_2+NO→HNO_3反应主要来自于单个水分子.此外,在216.7~298.6 K范围内水分子对HO_2+NO→HNO_3反应起显著的正催化作用,且随温度的升高有明显增大的趋势,在298.2 K时增强因子k'RW1/ktotal达到67.93%,表明在实际大气环境中水蒸气对HO_2+NO→HNO_3反应具有显著影响.  相似文献   

15.
The formation, reaction dynamics, and detailed kinetics and mechanism of the reaction between nitrous acid and N-acetylpenicillamine (NAP) to produce S-nitroso-N-acetylpenicillamine (SNAP) was studied in acidic medium. The nitrous acid was prepared in situ by the rapid reaction between sodium nitrite and hydrochloric acid. The reaction is first order in nitrite and NAP. It is also first order in acid in pH conditions at or slightly higher than the pK(a) of nitrous acid. In lower pH conditions, the catalytic effect of acid quickly saturates. Higher acid concentrations also induce a faster decomposition rate of the SNAP, thus precluding the quantitative formation of SNAP from HNO2 and NAP. Both HPLC and quadrupole time-of-flight mass spectrometry techniques proved that SNAP was the sole product produced. No nitrosation occurred on the secondary amine center in NAP, and only the thiol group reacted to form the nitrosothiol. Cu(I) ions were found to be effective SNAP-decomposition catalysts. Cu(II) ions had no effect on the stability of SNAP. Ambient oxygen in reaction solutions was found to have no effect on initial rates of formation of SNAP, products obtained, and stability of SNAP. The formation of SNAP occurs through two distinct pathways. One involves the direct reaction of NAP and HNO2 to form SNAP and eliminate water, and the second pathway involved the initial formation of the nitrosyl cation, NO+, which then nitrosates the thiol. The bimolecular rate constant for the reaction of NAP and HNO2 was derived as 2.69 M(-1) s(-1), while that of direct nitrosation by the nitrosyl cation was 3.00 x 10(4) M(-1) s(-1). A simple reaction network made up of four reactions was found to be sufficient in simulating the formation kinetics and acid-induced decomposition of SNAP.  相似文献   

16.
The formation of the S-nitrosocysteine (CySNO) in aqueous solution starting from cysteine (CySH) and sodium nitrite is shown to strongly depend on the pH. Experiments conducted within the pH range 0.5-7.0 show that at pH below 3.5 the NO+ (or H2NO 2 +) is the main nitrosating species, while at higher pH (>3.5) the nitrosating species is most likely the N2O3. A kinetic study provided a general kinetic equation, V(CySNO) = k1[HNO2][CySH]eq [H+] + k2[HNO2]2. The first term of this equation is predominant at pH lower than 3.5, in agreement with the literature for the direct nitrosation of thiols with nitrous acid; the value for the third-order rate constant, k(1) = 7.9 x 10(2) L(2) mol(-2) min(-1), was calculated. For experiments at pH higher than 3.5, the second term becomes prevalent and the second-order rate constant k(2) = (3.3 +/- 0.1) x 10(3) L mol(-1) min(-1) was calculated. A competitive oxidation process leading to the direct formation of cystine (CySSCy) has been also found. Most likely also for this process two different mechanisms are involved, depending on the pH, and a general kinetic equation, V(CySSCy) = k3[CySH](eq)[HNO2][H+] + k3'[CySH]eq[HNO2], is proposed.  相似文献   

17.
The reaction of oxygen atom in its first singlet excited state with nitrous oxide was investigated under the crossed molecular beam condition. This reaction has two major product channels, NO+NO and N2+O2. The product translational energy distributions and angular distributions of both channels were determined. Using oxygen-18 isotope labeled O(1D) reactant, the newly formed NO can be distinguished from the remaining NO that was contained in the reactant N2O. Both channels have asymmetric and forward-biased angular distributions, suggesting that there is no long-lived collision complex with lifetime longer than its rotational period. The translational energy release of the N2+O2 channel (fT = 0.57) is much higher than that of the NO+NO channel (fT = 0.31). The product energy partitioning into translational, rotational, and vibrational degrees of freedom is discussed to learn more about the reaction mechanism. The branching ratio between the two product channels was estimated. The 46N2O product of the isotope exchange channel, 18O+44N2O-->16O+46N2O, was below the detection limit and therefore, the upper limit of its yield was estimated to be 0.8%.  相似文献   

18.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

19.
Variational transition state analysis was performed on the barrierless phenyl + O2 and phenoxy + O association reactions. In addition, we also calculated rate constants for the related vinyl radical (C2H3) + O2 and vinoxy radical (C2H3O) + O reactions and provided rate constant estimates for analogous reactions in substituted aromatic systems. Potential energy scans along the dissociating C-OO and CO-O bonds (with consideration of C-OO internal rotation) were obtained at the O3LYP/6-31G(d) density functional theory level. The CO-O and C-OO bond scission reactions were observed to be barrierless, in both phenyl and vinyl systems. Potential energy wells were scaled by G3B3 reaction enthalpies to obtain accurate activation enthalpies. Frequency calculations were performed for all reactants and products and at points along the potential energy surfaces, allowing us to evaluate thermochemical properties as a function of temperature according to the principles of statistical mechanics and the rigid rotor harmonic oscillator (RRHO) approximation. The low-frequency vibrational modes corresponding to R-OO internal rotation were omitted from the RRHO analysis and replaced with a hindered internal rotor analysis using O3LYP/6-31G(d) rotor potentials. Rate constants were calculated as a function of temperature (300-2000 K) and position from activation entropies and enthalpies, according to canonical transition state theory; these rate constants were minimized with respect to position to obtain variational rate constants as a function of temperature. For the phenyl + O2 reaction, we identified the transition state to be located at a C-OO bond length of between 2.56 and 2.16 A (300-2000 K), while for the phenoxy + O reaction, the transition state was located at a CO-O bond length of 2.00-1.90 A. Variational rate constants were fit to a three-parameter form of the Arrhenius equation, and for the phenyl + O2 association reaction, we found k(T) = 1.860 x 1013T-0.217 exp(0.358/T) (with k in cm3 mol-1 s-1 and T in K); this rate equation provides good agreement with low-temperature experimental measurements of the phenyl + O2 rate constant. Preliminary results were presented for a correlation between activation energy (or reaction enthalpy) and pre-exponential factor for heterolytic O-O bond scission reactions.  相似文献   

20.
A number of experimental studies have shown recently that ppm-level additions of nitric oxide (NO) enhance the rate of nitrous oxide (N(2)O) decomposition catalyzed by Fe-ZSM-5 at low temperatures. In the present work, the NO-assisted N(2)O decomposition over mononuclear iron sites in Fe-ZSM-5 was studied on a molecular level using density functional theory (DFT) and transition-state theory. A reaction network consisting of over 100 elementary reactions was considered. The structure and energies of potential-energy minima were determined for all stable species, as were the structures and energies of all transition states. Reactions involving changes in spin potential-energy surfaces were also taken into account. In the absence of NO and at temperatures below 690 K, most active single iron sites (Z(-)[FeO](+)) are poisoned by small concentrations of water in the gas phase; however, in the presence of NO, these poisoned sites are converted into a novel active iron center (Z(-)[FeOH](+)). These latter sites are capable of promoting the dissociation of N(2)O into a surface oxygen atom and gas-phase N(2). The surface oxygen atom is removed by reaction with NO or nitrogen dioxide (NO(2)). N(2)O dissociation is the rate-limiting step in the reaction mechanism. At higher temperatures, water desorbs from inactive iron sites and the reaction mechanism for N(2)O decomposition becomes independent of NO, reverting to the reaction mechanism previously reported by Heyden et al. [J. Phys. Chem. B 2005, 109, 1857].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号