首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从结构的角度来说,天然的细胞外基质是由各种纳米尺度的蛋白纤维原和纤维交织而成的网状结构,静电纺丝制备纤维的直径在数十纳米到微米间可调,由它们松散堆积得到的多孔结构,不仅具有高孔隙率、高表面积、易于组合成不同形状的三维结构,还可以从尺度和形态上仿生模拟天然细胞外基质的胶原纤维(50~500nm)网络结构,这使静电纺丝纳米纤维支架成为组织工程支架的理想选择之一。本文结合所在课题组近年来在功能性纳米纤维的研究,详细介绍多种功能性纳米纤维的制备、生物医学应用等方面在国内外的研究进展,并探讨了基于功能性纳米纤维发展新型口腔/硬组织修复材料及产品的潜在应用研究。  相似文献   

2.
二氧化硅@聚合物同轴纳米纤维   总被引:1,自引:0,他引:1  
The preparation and formation mechamsm ot silica/polyvinylpyrrolidone(PAN) coaxial nanofibers were presented in this paper. The PVP-PAN composite nanofibers were obtained via an electrospinning technique, while SiO2 nanoparticles were prepared according to a Stoeher method. The measurements of water contact angle(WCA), the compared results of silica coating PVPPAN composite nanofibers with PAN nanofibers indicate that much PVP resided on the composite nanofiber surface, which resuks in the occurrence of SiO2@polymer coaxial nanofibers due to the formation of hydrogen bonding between silica and composite nanofibers and subsequent adsorption of silica on the fiber surface.  相似文献   

3.
将生物材料通过静电纺丝制备成的纳米纤维,具有比表面积大、空隙率高、生物相容性好等优点,因此得到广泛研究。本文主要综述了近年来国内外静电纺丝制备丝素蛋白纳米纤维的研究现状,重点介绍了采用不同溶剂制备的纯丝素蛋白纳米纤维和丝素蛋白与其它材料复合制备的丝素蛋白复合纳米纤维,并展望丝素蛋白纳米纤维潜在的应用前景。  相似文献   

4.
纳米BaFe12O19纤维的电纺制备及磁性研究   总被引:1,自引:0,他引:1  
以PVP的乙酸溶液为助纺剂,采用静电纺丝技术制得了纳米BaFe12O19纤维,利用XRD和EDS对样品的物相和成分进行了分析,利用SEM和TEM对样品形貌和粒径进行了表征,并利用振动样品磁强计(VSM)对样品进行了磁性能研究.结果表明,BaFe12O19/PVP复合纤维经过800℃煅烧后,制得了纯净的BaFe12O19纳米纤维,纤维平均直径为150 nm,呈现出多晶结构,矫顽力为4 164.9 G,与粉体相比,矫顽力有较大提升,有望扩展BaFe12O19在高密度垂直记录材料、微纳米电子材料和微波材料等领域的应用.  相似文献   

5.
静电纺丝(eleetrospinning)是一种制备纳米尺度连续长丝的便捷高效的纺丝技术,其应用前景相当广阔.聚酰亚胺(polyimide,PI)是一类具有广泛应用的耐高温、高强度、综合性能优异的高分子材料.近10年来,利用电纺制备PI新型材料的报道层出不穷,包括利用PI电纺纤维为前躯体制备碳纤维材料,电纺制备PI纳米...  相似文献   

6.
采用静电纺丝技术和化学镀方法相结合的方法,用聚丙烯腈(PAN)纳米纤维作为载体,以绿色环保的胺化改性替代化学镀传统的敏化、活化前处理,再化学镀银制备胺化聚丙烯腈纳米纤维载银复合膜(Ag/APAN).SEM、XPS、XRD、FTIR等结果表明,银离子能够吸附在经胺化处理后的PAN纳米纤维表面,且能够在纤维表面生成少量单质银;单质银作为催化活性中心,有效地促进化学镀银的进行,在PAN纳米纤维表面生成均匀致密的银纳米粒子层,制备出了以PAN纳米纤维为核,银层为壳的核壳结构复合膜.银纳米粒子附着在纳米纤维表面,可以使银纳米粒子的催化性能得到充分发挥.通过对催化邻-硝基苯胺与硼氢化钠之间氧化还原反应的研究表明,所制备的Ag/APAN纳米纤维复合膜具有很好的催化效果,且不会造成反应体系的二次污染.  相似文献   

7.
ZrO2纳米粉末复合羊毛纤维研究   总被引:2,自引:0,他引:2  
ZrO_2纳米粉末复合羊毛纤维研究陈代荣,樊悦朋(山东大学化学系济南250100)关键词ZrO_2纳米粉末,羊毛纤维,复合纤维由陶瓷粉末和天然纤维形成的复合纤维的强度、织品的保暖性、抗起球性及防缩性能等均有所提高,报道较多的是微米级陶瓷粉末(粒径0.5...  相似文献   

8.
以聚乙烯醇溶液为络合剂与醋酸锌反应制得前驱体溶液,采用静电纺丝法制备PVA/Zn(Ac)2复合纳米纤维,经过高温煅烧得到直径为100 nm的ZnO纳米纤维,采用差热-热重分析、红外光谱分析、X射线粉末衍射分析及扫描电镜等手段对其进行了表征.光催化降解酸性品红溶液的实验结果表明,太阳光照65 min使质量浓度为45 mg/L酸性品红水溶液的脱色率达93%;另外,重复使用ZnO纳米纤维4次之后,其光催化降解率仍能达到70%以上.这充分说明ZnO纳米纤维具有良好的光催化性能.  相似文献   

9.
通过纳米材料与纤维基体的复合制备出聚合物基纳米复合材料,使其兼具纳米材料的功能性和聚合物的易加工性。本文综述了纳米复合阻燃纤维、纳米复合抗紫外纤维、纳米复合抗菌纤维和纳米复合导电纤维材料及纳米复合功能纤维的研究现状,包括纳米材料的改性、设计构筑及其复合聚合物、复合材料纺丝和功能性评价。提出未来聚合物基纳米复合纤维的几个主要发展方向:纳米材料的结构设计及可控制备与功能复合技术、成纤高聚物纳米改性技术,以及纳米复合纤维后整理加工技术;开发多功能复合产业用纤维,以及利用纳米技术开发战略性新兴产业用功能纤维;智能纤维的开发研究;纳米复合功能纤维及纺织品的生态安全性及系统评价。  相似文献   

10.
近年来 ,利用分子自组装技术制备纳米材料已引起人们越来越多的兴趣[1] ,而从三嵌段共聚物在选择性溶剂中形成可分散的纳米颗粒并通过化学改性的方法使其具有某种功能或用作功能化的载体更具有实际意义 [2 ] .本文从由阴离子聚合得到的窄分布三嵌段共聚物出发 ,成功地制备了纳米空心纤维 ,将有可能用于制备纳米导线及模板聚合等方面 .1 实验部分1 .1 样品制备 采用阴离子聚合方法制备三嵌段共聚物 ,用凝胶色谱测定分子量分布宽度 ,光散射测定重均分子量 ,NMR测定其化学组成比 .将共聚物的甲苯浓溶液 (质量分数 30 % )倒入培养皿中并密…  相似文献   

11.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18 GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8 mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9 GHz达到一个最小值-47.8 dB,反射率低于-10 dB的吸收带宽为8.8 GHz,频率范围为9.2~18 GHz,反射率小于-20 dB的频率范围为11.5~18 GHz,带宽为6.5 GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

12.
通过静电纺丝技术和热处理制备了Li0.35Zn0.3Fe2.35O4纳米纤维和碳纳米纤维,并将它们各自均匀分散在硅橡胶基质中,测量了相应复合体在2~18GHz频率范围内的相对复介电常数和复磁导率,并根据传输线理论评估了由它们所构成的单层和双层结构吸波体的微波吸收特性。结果显示由于Li0.35Zn0.3Fe2.35O4纳米纤维与碳纳米纤维的电磁特性的有机结合,双层吸波体的微波吸收性能明显优于同厚度的单层吸波体。当以厚为1.8mm的Li0.35Zn0.3Fe2.35O4纳米纤维/硅橡胶复合体为吸收层和厚为0.2mm的碳纳米纤维/硅橡胶复合体为匹配层时,双层吸波体的反射率在13.9GHz达到一个最小值-47.8dB,反射率低于-10dB的吸收带宽为8.8GHz,频率范围为9.2~18GHz,反射率小于-20dB的频率范围为11.5~18GHz,带宽为6.5GHz,覆盖整个Ku波段。优化设计的双层吸波体有望作为一种轻质高效的Ku波段微波吸收材料。  相似文献   

13.
牛一凡  杨赢  杨文韬 《无机化学学报》2016,32(12):2129-2135
采用环境友好的一步水热法,以Ge Se4玻璃为原料,水溶液为反应介质,在80℃合成三方相硒(t-Se)一维纳米结构。用透射电子显微镜(TEM)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等手段表征了一维Se纳米纤维的形貌和结构。结果表明,合成的Se纤维沿t-Se的[001]方向生长,截面为六边形。反应144 h后,纤维长度达到毫米级,平均直径为1~5μm。对合成的Se纤维进行纳米压痕实验,测得其硬度和弹性模量分别为(399.5±20.4)MPa和(1.13±0.05)GPa。在p H=12.0的Na OH溶液(80℃)中,Se纳米纤维生长速度高于酸性(p H=3.3)和中性(p H=6.3)介质,反应24 h后,纤维平均长度和直径达到344和1.12μm。  相似文献   

14.
合成了聚苯胺纳米纤维,直径在50~70 nm之间;基于静电作用构建聚苯胺纳米纤维-纳米金复合膜界面,并在此界面上层层组装修饰叶酸分子,构建叶酸功能化传感界面,基于叶酸分子与癌细胞表面过量表达的叶酸受体之间的特异性识别作用,将此传感界面应用于对癌细胞的识别和捕获。结果表明:叶酸功能化传感界面能够特异性识别和捕获叶酸受体过量表达的癌细胞。采用电化学阻抗技术,以HeLa细胞为模型,应用于对癌细胞的识别和检测,细胞在1.0×104~6.4×106cells/mL浓度范围内与阻抗变化值ΔRct呈良好的线性关系;检出限为2000 cells/mL。本方法简单、快速灵敏、重现性和稳定性良好;制备的传感器可以再生使用。  相似文献   

15.
采用一步法制备了性质稳定的CdHgTe纳米晶, 将其与聚乙烯醇水溶液共混, 通过静电纺丝方法获得了CdHgTe纳米晶/聚乙烯醇纳米纤维. 改变聚乙烯醇水溶液的浓度可以使纤维的直径在200~400 nm范围内可调. 所制备的纳米纤维在近红外区域具有很强的荧光, 而且发光峰位与原水相纳米晶的峰位基本一致, 这是采用其它方法制备纳米晶与聚合物的复合材料难以实现的. 通过与聚乙烯醇的复合, 纳米晶的热稳定性得到进一步增强, 在120 ℃下将纳米纤维加热2 h, 其形貌和发光性质都未发生明显的变化.  相似文献   

16.
采用环境友好的一步水热法,以GeSe4玻璃为原料,水溶液为反应介质,在80℃合成三方相硒(t-Se)一维纳米结构。用透射电子显微镜(TEM)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、原子力显微镜(AFM)等手段表征了一维Se纳米纤维的形貌和结构。结果表明,合成的Se纤维沿t-Se的[001]方向生长,截面为六边形。反应144 h后,纤维长度达到毫米级,平均直径为1~5 μm。对合成的Se纤维进行纳米压痕实验,测得其硬度和弹性模量分别为(399.5±20.4)MPa和(1.13±0.05)GPa。在pH=12.0的NaOH溶液(80℃)中,Se纳米纤维生长速度高于酸性(pH=3.3)和中性(pH=6.3)介质,反应24 h后,纤维平均长度和直径达到344和1.12 μm。  相似文献   

17.
经由溶胶-凝胶法过程,应用静电纺丝机原理,以聚乙烯醇(PVA)和无机盐(LiMn2O4)为前驱物,制备出了含有LiMn2O4无机组分的复合纳米纤维,为复合无机纳米纤维的制备方式供给了一条新的思路。实验中系统地研究了PVA的浓度对其所形成的纤维描摹特征的影响。PVA水溶液用于纺丝的最好质量分数约为8.0%。在实验过程中,随着PVA质量分数的渐渐增加,其所形成纤维的直径也随之渐渐增大,而溶液的黏度也在逐步增大,这就使得溶剂挥发变得越来越难,小液珠的表面难以构成理想的“泰勒锥”,电压过小,样品溶液无法纺丝,在针头处成水滴状落在针头下方。电压过大则会在纤维丝上呈现念珠形态,阻碍样品电纺时的形貌。实验表明,在施加18kV的高电压,默认机器的其它设定条件下,依托不同质量分数的PVA溶液可制备出三种不同的纤维。  相似文献   

18.
静电纺丝法制备超细聚苯乙烯纳米纤维   总被引:1,自引:0,他引:1  
采用静电纺丝方法制备了超细聚苯乙烯纤维, 通过向溶液中添加有机胺盐并降低溶液浓度将纤维的平均直径降至100 nm, 并研究了盐的添加量对纤维直径的影响.  相似文献   

19.
纤维素纳米纤维很好的结合了纤维素的重要属性和纳米材料的各项特性,但纤维素大分子之间存在大量氢键,使得纤维素较难溶于普通溶剂,导致通过静电纺丝法直接制备纤维素纳米纤维具有一定的难度.而先采用静电纺丝法制备纤维素衍生物纳米纤维,再对纤维素衍生物纳米纤维进行水解也是制备纤维素纳米纤维的一种有效方法.本文对近年来这两种纤维素纳米纤维制备方法的研究进行了综述,并对静电纺制备纤维素纳米纤维的发展前景做出了展望.  相似文献   

20.
静电纺丝法制备Y2O3纳米纤维与表征   总被引:1,自引:0,他引:1  
采用静电纺丝法制备了PVA/Y(NO3)3复合纳米纤维,在适当的温度下进行热处理,得到Y2O3纳米纤维. 利用XRD,SEM,TG-DTA,FTIR等现代分析手段对样品进行了表征. XRD分析表明,PVA/Y(NO3)3复合纤维为无定型,焙烧温度在600 ℃以上得到晶态单相的Y2O3纳米纤维,属于立方晶系,空间群为Ia3. SEM分析表明,PVA/Y(NO3)3复合纤维表面光滑,平均直径为110 nm. 焙烧温度对Y2O3纳米纤维的形成有重要影响. 600 ℃焙烧得到的Y2O3纳米纤维的平均直径约50 nm,900 ℃焙烧得到的Y2O3纳米纤维由纳米颗粒堆积而成,部分已断裂. TG-DTA和FTIR分析表明,PVA,Y(NO3)3以及水分在600 ℃以上时完全分解挥发,最终样品为晶态单相的Y2O3纳米纤维.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号